org.deeplearning4j.optimize.api.ConvexOptimizer Maven / Gradle / Ivy
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.optimize.api;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.io.Serializable;
import java.util.Collection;
/**
* Convex optimizer.
* @author Adam Gibson
*/
public interface ConvexOptimizer extends Serializable {
/**
* The score for the optimizer so far
* @return the score for this optimizer so far
*/
double score();
Updater getUpdater();
ComputationGraphUpdater getComputationGraphUpdater();
void setUpdater(Updater updater);
void setUpdaterComputationGraph(ComputationGraphUpdater updater);
void setListeners(Collection listeners);
NeuralNetConfiguration getConf();
/**
* The gradient and score for this optimizer
* @return the gradient and score for this optimizer
*/
Pair gradientAndScore();
/**
* Calls optimize
* @return whether the convex optimizer
* converted or not
*/
boolean optimize();
/**
* The batch size for the optimizer
* @return
*/
int batchSize();
/**
* Set the batch size for the optimizer
* @param batchSize
*/
void setBatchSize(int batchSize);
/**
* Pre preProcess a line before an iteration
*/
void preProcessLine();
/**
* After the step has been made, do an action
* @param line
* */
void postStep(INDArray line);
/**
* Based on the gradient and score
* setup a search state
* @param pair the gradient and score
*/
void setupSearchState(Pair pair);
/**
* Update the gradient according to the configuration such as adagrad, momentum, and sparsity
* @param gradient the gradient to modify
* @param model the model with the parameters to update
* @param batchSize batchSize for update
* @paramType paramType to update
*/
void updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize);
/**
* Check termination conditions
* setup a search state
* @param gradient layer gradients
* @param iteration what iteration the optimizer is on
*/
boolean checkTerminalConditions(INDArray gradient, double oldScore, double score, int iteration);
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy