org.deeplearning4j.eval.EvaluationUtils Maven / Gradle / Ivy
package org.deeplearning4j.eval;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.util.TimeSeriesUtils;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.Arrays;
/**
* Utility methods for performing evaluation
*
* @author Alex Black
*/
public class EvaluationUtils {
public static INDArray reshapeTimeSeriesTo2d(INDArray labels) {
int[] labelsShape = labels.shape();
INDArray labels2d;
if (labelsShape[0] == 1) {
labels2d = labels.tensorAlongDimension(0, 1, 2).permutei(1, 0); //Edge case: miniBatchSize==1
} else if (labelsShape[2] == 1) {
labels2d = labels.tensorAlongDimension(0, 1, 0); //Edge case: timeSeriesLength=1
} else {
labels2d = labels.permute(0, 2, 1);
labels2d = labels2d.reshape('f', labelsShape[0] * labelsShape[2], labelsShape[1]);
}
return labels2d;
}
public static Pair extractNonMaskedTimeSteps(INDArray labels, INDArray predicted,
INDArray outputMask) {
if (labels.rank() != 3 || predicted.rank() != 3) {
throw new IllegalArgumentException("Invalid data: expect rank 3 arrays. Got arrays with shapes labels="
+ Arrays.toString(labels.shape()) + ", predictions=" + Arrays.toString(predicted.shape()));
}
//Reshaping here: basically RnnToFeedForwardPreProcessor...
//Dup to f order, to ensure consistent buffer for reshaping
labels = labels.dup('f');
predicted = predicted.dup('f');
INDArray labels2d = EvaluationUtils.reshapeTimeSeriesTo2d(labels);
INDArray predicted2d = EvaluationUtils.reshapeTimeSeriesTo2d(predicted);
if (outputMask == null) {
return new Pair<>(labels2d, predicted2d);
}
INDArray oneDMask = TimeSeriesUtils.reshapeTimeSeriesMaskToVector(outputMask);
float[] f = oneDMask.dup().data().asFloat();
int[] rowsToPull = new int[f.length];
int usedCount = 0;
for (int i = 0; i < f.length; i++) {
if (f[i] == 1.0f) {
rowsToPull[usedCount++] = i;
}
}
rowsToPull = Arrays.copyOfRange(rowsToPull, 0, usedCount);
labels2d = Nd4j.pullRows(labels2d, 1, rowsToPull);
predicted2d = Nd4j.pullRows(predicted2d, 1, rowsToPull);
return new Pair<>(labels2d, predicted2d);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy