org.deeplearning4j.nn.conf.distribution.Distributions Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.distribution;
import org.nd4j.linalg.factory.Nd4j;
/**
* Static method for instantiating an nd4j distribution from a configuration object.
*
*/
public class Distributions {
private Distributions() {}
public static org.nd4j.linalg.api.rng.distribution.Distribution createDistribution(Distribution dist) {
if (dist == null)
return null;
if (dist instanceof NormalDistribution) {
NormalDistribution nd = (NormalDistribution) dist;
return Nd4j.getDistributions().createNormal(nd.getMean(), nd.getStd());
}
if (dist instanceof GaussianDistribution) {
GaussianDistribution nd = (GaussianDistribution) dist;
return Nd4j.getDistributions().createNormal(nd.getMean(), nd.getStd());
}
if (dist instanceof UniformDistribution) {
UniformDistribution ud = (UniformDistribution) dist;
return Nd4j.getDistributions().createUniform(ud.getLower(), ud.getUpper());
}
if (dist instanceof BinomialDistribution) {
BinomialDistribution bd = (BinomialDistribution) dist;
return Nd4j.getDistributions().createBinomial(bd.getNumberOfTrials(), bd.getProbabilityOfSuccess());
}
throw new RuntimeException("unknown distribution type: " + dist.getClass());
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy