org.deeplearning4j.nn.conf.graph.ElementWiseVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import lombok.Data;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
/** An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
* For example, the activations may be combined by addition, subtraction or multiplication.
* Addition may use an arbitrary number of input arrays. Note that in the case of subtraction, only two inputs may be used.
* @author Alex Black
*/
@Data
public class ElementWiseVertex extends GraphVertex {
public ElementWiseVertex(@JsonProperty("op") Op op) {
this.op = op;
}
public enum Op {
Add, Subtract, Product
}
protected Op op;
@Override
public ElementWiseVertex clone() {
return new ElementWiseVertex(op);
}
@Override
public boolean equals(Object o) {
if (!(o instanceof ElementWiseVertex))
return false;
return ((ElementWiseVertex) o).op == op;
}
@Override
public int hashCode() {
return op.hashCode();
}
@Override
public int numParams(boolean backprop) {
return 0;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op op;
switch (this.op) {
case Add:
op = org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op.Add;
break;
case Subtract:
op = org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op.Subtract;
break;
case Product:
op = org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op.Product;
break;
default:
throw new RuntimeException();
}
return new org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex(graph, name, idx, op);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length == 1)
return vertexInputs[0];
InputType first = vertexInputs[0];
if (first.getType() != InputType.Type.CNN) {
//FF, RNN or flat CNN data inputs
for (int i = 1; i < vertexInputs.length; i++) {
if (vertexInputs[i].getType() != first.getType()) {
throw new InvalidInputTypeException(
"Invalid input: ElementWise vertex cannot process activations of different types:"
+ " first type = " + first.getType() + ", input type " + (i + 1)
+ " = " + vertexInputs[i].getType());
}
}
} else {
//CNN inputs... also check that the depth, width and heights match:
InputType.InputTypeConvolutional firstConv = (InputType.InputTypeConvolutional) first;
int fd = firstConv.getDepth();
int fw = firstConv.getWidth();
int fh = firstConv.getHeight();
for (int i = 1; i < vertexInputs.length; i++) {
if (vertexInputs[i].getType() != InputType.Type.CNN) {
throw new InvalidInputTypeException(
"Invalid input: ElementWise vertex cannot process activations of different types:"
+ " first type = " + InputType.Type.CNN + ", input type " + (i + 1)
+ " = " + vertexInputs[i].getType());
}
InputType.InputTypeConvolutional otherConv = (InputType.InputTypeConvolutional) vertexInputs[i];
int od = otherConv.getDepth();
int ow = otherConv.getWidth();
int oh = otherConv.getHeight();
if (fd != od || fw != ow || fh != oh) {
throw new InvalidInputTypeException(
"Invalid input: ElementWise vertex cannot process CNN activations of different sizes:"
+ "first [depth,width,height] = [" + fd + "," + fw + "," + fh
+ "], input " + i + " = [" + od + "," + ow + "," + oh + "]");
}
}
}
return first; //Same output shape/size as
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy