org.deeplearning4j.nn.conf.graph.LayerVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
/**
* LayerVertex is a GraphVertex with a neural network Layer (and, optionally an {@link InputPreProcessor}) in it
*
* @author Alex Black
*/
@NoArgsConstructor
@Data
public class LayerVertex extends GraphVertex {
private NeuralNetConfiguration layerConf;
private InputPreProcessor preProcessor;
//Set outputVertex to true when Layer is an OutputLayer, OR For use in specialized situations like reinforcement learning
// For RL situations, this Layer insn't an OutputLayer, but is the last layer in a graph, that gets its error/epsilon
// passed in externally
private boolean outputVertex;
public LayerVertex(NeuralNetConfiguration layerConf, InputPreProcessor preProcessor) {
this.layerConf = layerConf;
this.preProcessor = preProcessor;
}
public InputPreProcessor getPreProcessor() {
return this.preProcessor;
}
@Override
public GraphVertex clone() {
return new LayerVertex(layerConf.clone(), (preProcessor != null ? preProcessor.clone() : null));
}
@Override
public boolean equals(Object o) {
if (!(o instanceof LayerVertex))
return false;
LayerVertex lv = (LayerVertex) o;
if (!layerConf.equals(lv.layerConf))
return false;
if (preProcessor == null && lv.preProcessor != null || preProcessor != null && lv.preProcessor == null)
return false;
return preProcessor == null || preProcessor.equals(lv.preProcessor);
}
@Override
public int hashCode() {
return layerConf.hashCode() ^ (preProcessor != null ? preProcessor.hashCode() : 0);
}
@Override
public int numParams(boolean backprop) {
return layerConf.getLayer().initializer().numParams(layerConf);
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
//Now, we need to work out if this vertex is an output vertex or not...
boolean isOutput = graph.getConfiguration().getNetworkOutputs().contains(name);
org.deeplearning4j.nn.api.Layer layer =
layerConf.getLayer().instantiate(layerConf, null, idx, paramsView, initializeParams);
return new org.deeplearning4j.nn.graph.vertex.impl.LayerVertex(graph, name, idx, layer, preProcessor, isOutput);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length != 1) {
throw new InvalidInputTypeException(
"LayerVertex expects exactly one input. Got: " + Arrays.toString(vertexInputs));
}
//Assume any necessary preprocessors have already been added
InputType afterPreprocessor;
if (preProcessor == null)
afterPreprocessor = vertexInputs[0];
else
afterPreprocessor = preProcessor.getOutputType(vertexInputs[0]);
return layerConf.getLayer().getOutputType(layerIndex, afterPreprocessor);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy