org.deeplearning4j.nn.conf.graph.PreprocessorVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
/** PreprocessorVertex is a simple adaptor class that allows a {@link InputPreProcessor} to be used in a ComputationGraph
* GraphVertex, without it being associated with a layer.
* @author Alex Black
*/
@NoArgsConstructor
@Data
public class PreprocessorVertex extends GraphVertex {
private InputPreProcessor preProcessor;
/**
* @param preProcessor The input preprocessor
*/
public PreprocessorVertex(InputPreProcessor preProcessor) {
this.preProcessor = preProcessor;
}
@Override
public GraphVertex clone() {
return new PreprocessorVertex(preProcessor.clone());
}
@Override
public boolean equals(Object o) {
if (!(o instanceof PreprocessorVertex))
return false;
return ((PreprocessorVertex) o).preProcessor.equals(preProcessor);
}
@Override
public int hashCode() {
return preProcessor.hashCode();
}
@Override
public int numParams(boolean backprop) {
return 0;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
return new org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex(graph, name, idx, preProcessor);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length != 1)
throw new InvalidInputTypeException("Invalid input: Preprocessor vertex expects " + "exactly one input");
return preProcessor.getOutputType(vertexInputs[0]);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy