All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.graph.vertex.impl;

import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.Or;
import org.nd4j.linalg.factory.Nd4j;

/** An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
* For example, the activations may be combined by addition, subtraction or multiplication. * Addition may use an arbitrary number of input arrays. Note that in the case of subtraction, only two inputs may be used. * In all cases, the shape of the input arrays must be identical. * @author Alex Black */ public class ElementWiseVertex extends BaseGraphVertex { public enum Op { Add, Subtract, Product } private Op op; private int nInForwardPass; public ElementWiseVertex(ComputationGraph graph, String name, int vertexIndex, Op op) { this(graph, name, vertexIndex, null, null, op); } public ElementWiseVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices, VertexIndices[] outputVertices, Op op) { super(graph, name, vertexIndex, inputVertices, outputVertices); this.op = op; } @Override public boolean hasLayer() { return false; } @Override public boolean isOutputVertex() { return false; } @Override public Layer getLayer() { return null; } @Override public INDArray doForward(boolean training) { if (!canDoForward()) throw new IllegalStateException("Cannot do forward pass: inputs not set"); nInForwardPass = inputs.length; if (inputs.length == 1) return inputs[0]; switch (op) { case Add: INDArray sum = inputs[0].dup(); for (int i = 1; i < inputs.length; i++) { sum.addi(inputs[i]); } return sum; case Subtract: if (inputs.length != 2) throw new IllegalArgumentException("ElementWise subtraction only supports 2 inputs"); return inputs[0].sub(inputs[1]); case Product: throw new UnsupportedOperationException("ElementWise product: Not yet implemented"); default: throw new UnsupportedOperationException("Unknown op: " + op); } } @Override public Pair doBackward(boolean tbptt) { if (!canDoBackward()) throw new IllegalStateException("Cannot do backward pass: errors not set"); if (nInForwardPass == 1) return new Pair<>(null, new INDArray[] {epsilon}); switch (op) { case Add: //If x=sum_i a_i then dL/da_i = dL/dx * dx/da_i = dL/dx INDArray[] out = new INDArray[nInForwardPass]; for (int i = 0; i < nInForwardPass; i++) out[i] = epsilon.dup(); return new Pair<>(null, out); case Subtract: INDArray[] out2 = new INDArray[2]; out2[0] = epsilon; out2[1] = epsilon.neg(); return new Pair<>(null, out2); case Product: throw new UnsupportedOperationException("ElementWise product: Not yet implemented"); default: throw new UnsupportedOperationException("Unknown op: " + op); } } @Override public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) { if (backpropGradientsViewArray != null) throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here"); } @Override public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState, int minibatchSize) { if (maskArrays == null) { return new Pair<>(null, currentMaskState); } //Most common case: all or none. //If there's only *some* mask arrays: assume the others (missing) are equivalent to all 1s //And for handling multiple masks: best strategy seems to be an OR operation //i.e., output is 1 if any of the input are 1s //Which means: if any masks are missing, output null (equivalent to no mask, or all steps present) //Otherwise do an element-wise OR operation for (INDArray arr : maskArrays) { if (arr == null) { return new Pair<>(null, currentMaskState); } } //At this point: all present. Do OR operation if (maskArrays.length == 1) { return new Pair<>(maskArrays[0], currentMaskState); } else { INDArray ret = maskArrays[0].dup(maskArrays[0].ordering()); Nd4j.getExecutioner().exec(new Or(maskArrays[0], maskArrays[1], ret)); for (int i = 2; i < maskArrays.length; i++) { Nd4j.getExecutioner().exec(new Or(maskArrays[i], ret, ret)); } return new Pair<>(ret, currentMaskState); } } @Override public String toString() { return "ElementWiseVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",op=" + op + ")"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy