All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.graph.vertex.impl;

import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;

/**
 * A ScaleVertex is used to scale the size of activations of a single layer
* For example, ResNet activations can be scaled in repeating blocks to keep variance * under control. * * @author Justin Long (@crockpotveggies) */ public class ScaleVertex extends BaseGraphVertex { private double scaleFactor; public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, double scaleFactor) { this(graph, name, vertexIndex, null, null, scaleFactor); } public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices, VertexIndices[] outputVertices, double scaleFactor) { super(graph, name, vertexIndex, inputVertices, outputVertices); this.scaleFactor = scaleFactor; } @Override public boolean hasLayer() { return false; } @Override public boolean isOutputVertex() { return false; } @Override public Layer getLayer() { return null; } @Override public INDArray doForward(boolean training) { if (!canDoForward()) throw new IllegalStateException("Cannot do forward pass: inputs not set (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); if (inputs.length > 1) throw new IllegalArgumentException( "ScaleVertex (name " + vertexName + " idx " + vertexIndex + ") only supports 1 input."); INDArray prod = inputs[0].dup(); prod.muli(scaleFactor); return prod; } @Override public Pair doBackward(boolean tbptt) { if (!canDoBackward()) throw new IllegalStateException("Cannot do backward pass: errors not set (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); return new Pair<>(null, new INDArray[] {epsilon.muli(scaleFactor)}); } @Override public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) { if (backpropGradientsViewArray != null) throw new RuntimeException( "Vertex does not have gradients; gradients view array cannot be set here (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); } @Override public String toString() { return "ScaleVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",scaleFactor=" + scaleFactor + ")"; } @Override public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState, int minibatchSize) { //No op if (maskArrays == null || maskArrays.length == 0) { return null; } return new Pair<>(maskArrays[0], currentMaskState); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy