org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.Arrays;
/**
* UnstackVertex allows for unstacking of inputs so that they may be forwarded through
* a network. This is useful for cases such as Triplet Embedding, where embeddings can
* be separated and run through subsequent layers.
*
* Works similarly to SubsetVertex, except on dimension 0 of the input. stackSize is
* explicitly defined by the user to properly calculate an step.
*
* @author Justin Long (crockpotveggies)
*/
public class UnstackVertex extends BaseGraphVertex {
private int from;
private int stackSize;
private int forwardShape[];
private int step;
public UnstackVertex(ComputationGraph graph, String name, int vertexIndex, int from, int stackSize) {
this(graph, name, vertexIndex, null, null, from, stackSize);
}
public UnstackVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, int from, int stackSize) {
super(graph, name, vertexIndex, inputVertices, outputVertices);
this.from = from;
this.stackSize = stackSize;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public boolean isOutputVertex() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: input not set");
// once we know the inputs, save the shape and interval size for doBackward
this.forwardShape = Arrays.copyOf(inputs[0].shape(), inputs[0].rank());
this.step = inputs[0].size(0) / stackSize;
int start = from * step;
int end = (from + 1) * step;
switch (inputs[0].rank()) { //TODO remove the dups here if/when possible (gradient checks must pass)
case 2:
return inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all()).dup();
case 3:
return inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all()).dup();
case 4:
return inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all()).dup();
default:
throw new UnsupportedOperationException(
"Cannot get subset for activations of rank " + inputs[0].rank());
}
}
@Override
public Pair doBackward(boolean tbptt) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: error not set");
INDArray out = Nd4j.zeros(forwardShape);
int start = from * step;
int end = (from + 1) * step;
switch (forwardShape.length) {
case 2:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all()}, epsilon);
break;
case 3:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all()},
epsilon);
break;
case 4:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all()}, epsilon);
break;
default:
throw new RuntimeException("Invalid activation rank"); //Should never happen
}
return new Pair<>(null, new INDArray[] {out});
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
if (maskArrays == null || maskArrays.length == 0) {
return new Pair<>(null, currentMaskState);
}
//Mask arrays are either 1d (column vector) or 2d...
int start = from * step;
int end = (from + 1) * step;
INDArray outMask = maskArrays[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all());
return new Pair<>(outMask, currentMaskState);
}
@Override
public String toString() {
return "UnstackVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",fromIdx=" + from
+ ",forwardShape=" + forwardShape + ")";
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy