org.deeplearning4j.eval.EvaluationUtils Maven / Gradle / Ivy
package org.deeplearning4j.eval;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.util.TimeSeriesUtils;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.Arrays;
/**
* Utility methods for performing evaluation
*
* @author Alex Black
*/
public class EvaluationUtils {
/**
* Calculate the precision from true positive and false positive counts
*
* @param tpCount True positive count
* @param fpCount False positive count
* @param edgeCase Edge case value use to avoid 0/0
* @return Precision
*/
public static double precision(long tpCount, long fpCount, double edgeCase) {
//Edge case
if (tpCount == 0 && fpCount == 0) {
return edgeCase;
}
return tpCount / (double) (tpCount + fpCount);
}
/**
* Calculate the recall from true positive and false negative counts
*
* @param tpCount True positive count
* @param fnCount False negative count
* @param edgeCase Edge case values used to avoid 0/0
* @return Recall
*/
public static double recall(long tpCount, long fnCount, double edgeCase) {
//Edge case
if (tpCount == 0 && fnCount == 0) {
return edgeCase;
}
return tpCount / (double) (tpCount + fnCount);
}
/**
* Calculate the false positive rate from the false positive count and true negative count
*
* @param fpCount False positive count
* @param tnCount True negative count
* @param edgeCase Edge case values are used to avoid 0/0
* @return False positive rate
*/
public static double falsePositiveRate(long fpCount, long tnCount, double edgeCase) {
//Edge case
if (fpCount == 0 && tnCount == 0) {
return edgeCase;
}
return fpCount / (double) (fpCount + tnCount);
}
/**
* Calculate the false negative rate from the false negative counts and true positive count
*
* @param fnCount False negative count
* @param tpCount True positive count
* @param edgeCase Edge case value to use to avoid 0/0
* @return False negative rate
*/
public static double falseNegativeRate(long fnCount, long tpCount, double edgeCase) {
//Edge case
if (fnCount == 0 && tpCount == 0) {
return edgeCase;
}
return fnCount / (double) (fnCount + tpCount);
}
/**
* Calculate the F beta value from counts
*
* @param beta Beta of value to use
* @param tp True positive count
* @param fp False positive count
* @param fn False negative count
* @return F beta
*/
public static double fBeta(double beta, long tp, long fp, long fn) {
double prec = tp / ((double) tp + fp);
double recall = tp / ((double) tp + fn);
return fBeta(beta, prec, recall);
}
/**
* Calculate the F-beta value from precision and recall
*
* @param beta Beta value to use
* @param precision Precision
* @param recall Recall
* @return F-beta value
*/
public static double fBeta(double beta, double precision, double recall) {
if (precision == 0.0 || recall == 0.0)
return 0;
double numerator = (1 + beta * beta) * precision * recall;
double denominator = beta * beta * precision + recall;
return numerator / denominator;
}
/**
* Calculate the G-measure from precision and recall
*
* @param precision Precision value
* @param recall Recall value
* @return G-measure
*/
public static double gMeasure(double precision, double recall) {
return Math.sqrt(precision * recall);
}
/**
* Calculate the binary Matthews correlation coefficient from counts
*
* @param tp True positive count
* @param fp False positive counts
* @param fn False negative counts
* @param tn True negative count
* @return Matthews correlation coefficient
*/
public static double matthewsCorrelation(long tp, long fp, long fn, long tn) {
double numerator = ((double) tp) * tn - ((double) fp) * fn;
double denominator = Math.sqrt(((double) tp + fp) * (tp + fn) * (tn + fp) * (tn + fn));
return numerator / denominator;
}
public static INDArray reshapeTimeSeriesTo2d(INDArray labels) {
int[] labelsShape = labels.shape();
INDArray labels2d;
if (labelsShape[0] == 1) {
labels2d = labels.tensorAlongDimension(0, 1, 2).permutei(1, 0); //Edge case: miniBatchSize==1
} else if (labelsShape[2] == 1) {
labels2d = labels.tensorAlongDimension(0, 1, 0); //Edge case: timeSeriesLength=1
} else {
labels2d = labels.permute(0, 2, 1);
labels2d = labels2d.reshape('f', labelsShape[0] * labelsShape[2], labelsShape[1]);
}
return labels2d;
}
public static Pair extractNonMaskedTimeSteps(INDArray labels, INDArray predicted,
INDArray outputMask) {
if (labels.rank() != 3 || predicted.rank() != 3) {
throw new IllegalArgumentException("Invalid data: expect rank 3 arrays. Got arrays with shapes labels="
+ Arrays.toString(labels.shape()) + ", predictions=" + Arrays.toString(predicted.shape()));
}
//Reshaping here: basically RnnToFeedForwardPreProcessor...
//Dup to f order, to ensure consistent buffer for reshaping
labels = labels.dup('f');
predicted = predicted.dup('f');
INDArray labels2d = EvaluationUtils.reshapeTimeSeriesTo2d(labels);
INDArray predicted2d = EvaluationUtils.reshapeTimeSeriesTo2d(predicted);
if (outputMask == null) {
return new Pair<>(labels2d, predicted2d);
}
INDArray oneDMask = TimeSeriesUtils.reshapeTimeSeriesMaskToVector(outputMask);
float[] f = oneDMask.dup().data().asFloat();
int[] rowsToPull = new int[f.length];
int usedCount = 0;
for (int i = 0; i < f.length; i++) {
if (f[i] == 1.0f) {
rowsToPull[usedCount++] = i;
}
}
rowsToPull = Arrays.copyOfRange(rowsToPull, 0, usedCount);
labels2d = Nd4j.pullRows(labels2d, 1, rowsToPull);
predicted2d = Nd4j.pullRows(predicted2d, 1, rowsToPull);
return new Pair<>(labels2d, predicted2d);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy