org.deeplearning4j.nn.api.NeuralNetwork Maven / Gradle / Ivy
package org.deeplearning4j.nn.api;
import org.deeplearning4j.eval.IEvaluation;
import org.deeplearning4j.optimize.api.ConvexOptimizer;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;
/**
* @author raver119
*/
public interface NeuralNetwork {
/**
* This method does initialization of model
*
* PLEASE NOTE: All implementations should track own state, to avoid double spending
*/
void init();
/**
* This method returns model parameters as single INDArray
*
* @return
*/
INDArray params();
/**
* This method returns updater state (if applicable), null otherwise
* @return
*/
INDArray updaterState();
/**
* This method returns Optimizer used for training
*
* @return
*/
ConvexOptimizer getOptimizer();
/**
* This method fits model with a given DataSet
*
* @param dataSet
*/
void fit(DataSet dataSet);
/**
* This method fits model with a given MultiDataSet
*
* @param dataSet
*/
void fit(MultiDataSet dataSet);
/**
* This method fits model with a given DataSetIterator
*
* @param iterator
*/
void fit(DataSetIterator iterator);
/**
* This method fits model with a given MultiDataSetIterator
*
* @param iterator
*/
void fit(MultiDataSetIterator iterator);
/**
* This method executes evaluation of the model against given iterator and evaluation implementations
*
* @param iterator
*/
T[] doEvaluation(DataSetIterator iterator, T... evaluations);
/**
* This method executes evaluation of the model against given iterator and evaluation implementations
*
* @param iterator
*/
T[] doEvaluation(MultiDataSetIterator iterator, T... evaluations);
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy