org.deeplearning4j.nn.conf.graph.L2NormalizeVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import java.util.HashMap;
import java.util.Map;
/**
* L2NormalizeVertex performs L2 normalization on a single input.
*
* Can be configured to normalize a single dimension, or normalize across
* all dimensions except zero by leaving dimension blank or setting it to -1.
*
* @author Justin Long (crockpotveggies)
* @author Alex Black (AlexDBlack)
*/
@Data
public class L2NormalizeVertex extends GraphVertex {
public static final double DEFAULT_EPS = 1e-8;
protected int[] dimension;
protected double eps;
public L2NormalizeVertex() {
this(null, DEFAULT_EPS);
}
public L2NormalizeVertex(@JsonProperty("dimension") int[] dimension, @JsonProperty("eps") double eps) {
this.dimension = dimension;
this.eps = eps;
}
@Override
public L2NormalizeVertex clone() {
return new L2NormalizeVertex(dimension, eps);
}
@Override
public boolean equals(Object o) {
if (!(o instanceof L2NormalizeVertex))
return false;
return ((L2NormalizeVertex) o).dimension == dimension;
}
@Override
public int hashCode() {
return 123081189;
}
@Override
public int numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
return new org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex(graph, name, idx, dimension, eps);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length == 1)
return vertexInputs[0];
InputType first = vertexInputs[0];
return first; //Same output shape/size as
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
InputType outputType = getOutputType(-1, inputTypes);
//norm2 value (inference working mem): 1 per example during forward pass
//Training working mem: 2 per example + 2x input size + 1 per example (in addition to epsilons)
int trainModePerEx = 3 + 2 * inputTypes[0].arrayElementsPerExample();
return new LayerMemoryReport.Builder(null, L2NormalizeVertex.class, inputTypes[0], outputType)
.standardMemory(0, 0) //No params
.workingMemory(0, 1, 0, trainModePerEx).cacheMemory(0, 0) //No caching
.build();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy