All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.graph.MergeVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.conf.graph;


import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;

/** A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
* Exactly how this is done depends on the type of input.
* For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
* For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength]) * -> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
* For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height]) * -> [numExamples,depth1 + depth2,width,height]
* @author Alex Black */ public class MergeVertex extends GraphVertex { @Override public MergeVertex clone() { return new MergeVertex(); } @Override public boolean equals(Object o) { return o instanceof MergeVertex; } @Override public int hashCode() { return 433682566; } @Override public int numParams(boolean backprop) { return 0; } @Override public int minVertexInputs() { return 2; } @Override public int maxVertexInputs() { return Integer.MAX_VALUE; } @Override public String toString() { return "MergeVertex()"; } @Override public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx, INDArray paramsView, boolean initializeParams) { return new org.deeplearning4j.nn.graph.vertex.impl.MergeVertex(graph, name, idx); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { if (vertexInputs.length == 1) return vertexInputs[0]; InputType first = vertexInputs[0]; if (first.getType() == InputType.Type.CNNFlat) { //TODO //Merging flattened CNN format data could be messy? throw new InvalidInputTypeException( "Invalid input: MergeVertex cannot currently merge CNN data in flattened format. Got: " + vertexInputs); } else if (first.getType() != InputType.Type.CNN) { //FF or RNN data inputs int size = 0; InputType.Type type = null; for (int i = 0; i < vertexInputs.length; i++) { if (vertexInputs[i].getType() != first.getType()) { throw new InvalidInputTypeException( "Invalid input: MergeVertex cannot merge activations of different types:" + " first type = " + first.getType() + ", input type " + (i + 1) + " = " + vertexInputs[i].getType()); } int thisSize; switch (vertexInputs[i].getType()) { case FF: thisSize = ((InputType.InputTypeFeedForward) vertexInputs[i]).getSize(); type = InputType.Type.FF; break; case RNN: thisSize = ((InputType.InputTypeRecurrent) vertexInputs[i]).getSize(); type = InputType.Type.RNN; break; default: throw new IllegalStateException("Unknown input type: " + vertexInputs[i]); //Should never happen } if (thisSize <= 0) {//Size is not defined size = -1; } else { size += thisSize; } } if (size > 0) { //Size is specified if (type == InputType.Type.FF) { return InputType.feedForward(size); } else { int tsLength = ((InputType.InputTypeRecurrent) vertexInputs[0]).getTimeSeriesLength(); return InputType.recurrent(size, tsLength); } } else { //size is unknown if (type == InputType.Type.FF) { return InputType.feedForward(-1); } else { int tsLength = ((InputType.InputTypeRecurrent) vertexInputs[0]).getTimeSeriesLength(); return InputType.recurrent(-1, tsLength); } } } else { //CNN inputs... also check that the depth, width and heights match: InputType.InputTypeConvolutional firstConv = (InputType.InputTypeConvolutional) first; int fd = firstConv.getDepth(); int fw = firstConv.getWidth(); int fh = firstConv.getHeight(); int depthSum = fd; for (int i = 1; i < vertexInputs.length; i++) { if (vertexInputs[i].getType() != InputType.Type.CNN) { throw new InvalidInputTypeException( "Invalid input: MergeVertex cannot process activations of different types:" + " first type = " + InputType.Type.CNN + ", input type " + (i + 1) + " = " + vertexInputs[i].getType()); } InputType.InputTypeConvolutional otherConv = (InputType.InputTypeConvolutional) vertexInputs[i]; int od = otherConv.getDepth(); int ow = otherConv.getWidth(); int oh = otherConv.getHeight(); if (fw != ow || fh != oh) { throw new InvalidInputTypeException( "Invalid input: MergeVertex cannot merge CNN activations of different width/heights:" + "first [depth,width,height] = [" + fd + "," + fw + "," + fh + "], input " + i + " = [" + od + "," + ow + "," + oh + "]"); } depthSum += od; } return InputType.convolutional(fh, fw, depthSum); } } @Override public MemoryReport getMemoryReport(InputType... inputTypes) { InputType outputType = getOutputType(-1, inputTypes); //TODO multiple input types return new LayerMemoryReport.Builder(null, MergeVertex.class, inputTypes[0], outputType).standardMemory(0, 0) //No params .workingMemory(0, 0, 0, 0) //No working memory in addition to activations/epsilons .cacheMemory(0, 0) //No caching .build(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy