All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.graph.ScaleVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.conf.graph;

import lombok.Data;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;

/**
 * A ScaleVertex is used to scale the size of activations of a single layer
* For example, ResNet activations can be scaled in repeating blocks to keep variance * under control. * * @author Justin Long (@crockpotveggies) */ @Data public class ScaleVertex extends GraphVertex { public ScaleVertex(@JsonProperty("scaleFactor") double scaleFactor) { this.scaleFactor = scaleFactor; } protected double scaleFactor; @Override public ScaleVertex clone() { return new ScaleVertex(scaleFactor); } @Override public boolean equals(Object o) { if (!(o instanceof ScaleVertex)) return false; return ((ScaleVertex) o).scaleFactor == scaleFactor; } @Override public int hashCode() { return 123073088; } @Override public int numParams(boolean backprop) { return 0; } @Override public int minVertexInputs() { return 1; } @Override public int maxVertexInputs() { return 1; } @Override public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx, INDArray paramsView, boolean initializeParams) { return new org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex(graph, name, idx, scaleFactor); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { if (vertexInputs.length == 1) return vertexInputs[0]; InputType first = vertexInputs[0]; return first; //Same output shape/size as } @Override public MemoryReport getMemoryReport(InputType... inputTypes) { //Do one dup on the forward pass (output activations). Accounted for in output activations. InputType outputType = getOutputType(-1, inputTypes); return new LayerMemoryReport.Builder(null, ScaleVertex.class, inputTypes[0], outputType).standardMemory(0, 0) //No params .workingMemory(0, 0, 0, 0).cacheMemory(0, 0) //No caching .build(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy