org.deeplearning4j.nn.conf.graph.ScaleVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;
/**
* A ScaleVertex is used to scale the size of activations of a single layer
* For example, ResNet activations can be scaled in repeating blocks to keep variance
* under control.
*
* @author Justin Long (@crockpotveggies)
*/
@Data
public class ScaleVertex extends GraphVertex {
public ScaleVertex(@JsonProperty("scaleFactor") double scaleFactor) {
this.scaleFactor = scaleFactor;
}
protected double scaleFactor;
@Override
public ScaleVertex clone() {
return new ScaleVertex(scaleFactor);
}
@Override
public boolean equals(Object o) {
if (!(o instanceof ScaleVertex))
return false;
return ((ScaleVertex) o).scaleFactor == scaleFactor;
}
@Override
public int hashCode() {
return 123073088;
}
@Override
public int numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
return new org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex(graph, name, idx, scaleFactor);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length == 1)
return vertexInputs[0];
InputType first = vertexInputs[0];
return first; //Same output shape/size as
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
//Do one dup on the forward pass (output activations). Accounted for in output activations.
InputType outputType = getOutputType(-1, inputTypes);
return new LayerMemoryReport.Builder(null, ScaleVertex.class, inputTypes[0], outputType).standardMemory(0, 0) //No params
.workingMemory(0, 0, 0, 0).cacheMemory(0, 0) //No caching
.build();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy