All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.conf.graph.rnn;

import lombok.EqualsAndHashCode;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import lombok.Data;
import org.deeplearning4j.nn.conf.graph.GraphVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;

/**
 * DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of
 * duplication. That is, given a 2d input with shape [numExamples,nIn] duplicate each row to give output of
 * [numExamples,nIn,timeSeriesLength], where the activations are the same for all time steps.
* This method is used for example in sequence to sequence models.
* Note: The length of the output time series (number of time steps) is determined by means of referencing one of the * inputs in the ComputationGraph. That is: Because the length of the time series may differ at runtime, we generally want the number * of time steps to match some other input; here, we are specifying the length of the output time series to be the same as * one of the input time series
* * @author Alex Black */ @Data @EqualsAndHashCode(callSuper = false) public class DuplicateToTimeSeriesVertex extends GraphVertex { private String inputName; /** * @param inputName Name of the input in the ComputationGraph network to use, to determine how long the output time * series should be. This input should (a) exist, and (b) be a time series input */ public DuplicateToTimeSeriesVertex(@JsonProperty("inputName") String inputName) { this.inputName = inputName; } @Override public GraphVertex clone() { return new DuplicateToTimeSeriesVertex(inputName); } @Override public boolean equals(Object o) { if (!(o instanceof DuplicateToTimeSeriesVertex)) return false; DuplicateToTimeSeriesVertex d = (DuplicateToTimeSeriesVertex) o; if (inputName == null && d.inputName != null || inputName != null && d.inputName == null) return false; return inputName == null || inputName.equals(d.inputName); } @Override public int hashCode() { return 534806565 ^ (inputName != null ? inputName.hashCode() : 0); } @Override public int numParams(boolean backprop) { return 0; } @Override public int minVertexInputs() { return 1; } @Override public int maxVertexInputs() { return 1; } @Override public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx, INDArray paramsView, boolean initializeParams) { return new org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex(graph, name, idx, inputName); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { if (vertexInputs.length != 1) throw new InvalidInputTypeException("Invalid input type: cannot duplicate more than 1 input"); int tsLength = 1; //TODO work this out properly if (vertexInputs[0].getType() == InputType.Type.FF) { return InputType.recurrent(((InputType.InputTypeFeedForward) vertexInputs[0]).getSize(), tsLength); } else if (vertexInputs[0].getType() != InputType.Type.CNNFlat) { return InputType.recurrent(((InputType.InputTypeConvolutionalFlat) vertexInputs[0]).getFlattenedSize(), tsLength); } else { throw new InvalidInputTypeException( "Invalid input type: cannot duplicate to time series non feed forward (or CNN flat) input (got: " + vertexInputs[0] + ")"); } } @Override public MemoryReport getMemoryReport(InputType... inputTypes) { //No working memory in addition to output activations return new LayerMemoryReport.Builder(null, DuplicateToTimeSeriesVertex.class, inputTypes[0], getOutputType(-1, inputTypes)).standardMemory(0, 0).workingMemory(0, 0, 0, 0).cacheMemory(0, 0) .build(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy