org.deeplearning4j.nn.conf.layers.Convolution1DLayer Maven / Gradle / Ivy
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.util.*;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
/**
* 1D (temporal) convolutional layer. Currently, we just subclass off the
* ConvolutionLayer and hard code the "width" dimension to 1. Also, this
* layer accepts RNN InputTypes instead of CNN InputTypes.
*
* This approach treats a multivariate time series with L timesteps and
* P variables as an L x 1 x P image (L rows high, 1 column wide, P
* channels deep). The kernel should be H iterationListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams) {
org.deeplearning4j.util.LayerValidation.assertNInNOutSet("Convolution1DLayer", getLayerName(), layerIndex,
getNIn(), getNOut());
org.deeplearning4j.nn.layers.convolution.Convolution1DLayer ret =
new org.deeplearning4j.nn.layers.convolution.Convolution1DLayer(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for 1D CNN layer (layer index = " + layerIndex
+ ", layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: "
+ inputType);
}
return InputType.recurrent(nOut);
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for 1D CNN layer (layer name = \"" + getLayerName()
+ "\"): expect RNN input type with size > 0. Got: " + inputType);
}
if (nIn <= 0 || override) {
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
this.nIn = r.getSize();
}
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException("Invalid input for Convolution1D layer (layer name=\"" + getLayerName()
+ "\"): input is null");
}
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, getLayerName());
}
public static class Builder extends ConvolutionLayer.BaseConvBuilder {
public Builder() {
this(0, 1, 0);
this.kernelSize = null;
}
public Builder(int kernelSize, int stride) {
this(kernelSize, stride, 0);
}
public Builder(int kernelSize) {
this(kernelSize, 1, 0);
}
public Builder(int kernelSize, int stride, int padding) {
this.kernelSize = new int[] {kernelSize, 1};
this.stride = new int[] {stride, 1};
this.padding = new int[] {padding, 0};
}
/**
* Size of the convolution
* @param kernelSize the length of the kernel
*/
public Builder kernelSize(int kernelSize) {
this.kernelSize = new int[] {kernelSize, 1};
return this;
}
public Builder stride(int stride) {
this.stride[0] = stride;
return this;
}
public Builder padding(int padding) {
this.padding[0] = padding;
return this;
}
@Override
@SuppressWarnings("unchecked")
public Convolution1DLayer build() {
ConvolutionUtils.validateCnnKernelStridePadding(kernelSize, stride, padding);
return new Convolution1DLayer(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy