org.deeplearning4j.nn.conf.layers.RBM Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.PretrainParamInitializer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
/**
* Restricted Boltzmann Machine.
*
* Markov chain with gibbs sampling.
*
* Supports the following visible units:
* BINARY
* GAUSSIAN
* SOFTMAX
* LINEAR
*
* Supports the following hidden units:
* RECTIFIED
* BINARY
* GAUSSIAN
* SOFTMAX
*
* Based on Hinton et al.'s work
*
* Great reference:
* http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239
*
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class RBM extends BasePretrainNetwork {
protected HiddenUnit hiddenUnit;
protected VisibleUnit visibleUnit;
protected int k; // gibbs sampling steps standard is 1 and includes propup and propdown
protected double sparsity;
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection iterationListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams) {
org.deeplearning4j.nn.layers.feedforward.rbm.RBM ret =
new org.deeplearning4j.nn.layers.feedforward.rbm.RBM(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return PretrainParamInitializer.getInstance();
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
//Because of supervised + unsupervised modes: we'll assume unsupervised, which has the larger memory requiremnts
InputType outputType = getOutputType(-1, inputType);
int actElementsPerEx = outputType.arrayElementsPerExample();
//During unsupervised training: approximately
//k iterations of preOut + activation function; sample array (equal to output size)
int unsupervisedPerEx = getK() * 2 * actElementsPerEx + inputType.arrayElementsPerExample();
int numParams = initializer().numParams(this);
int updaterStateSize = (int) getIUpdater().stateSize(numParams);
int trainSizePerEx = 0;
if (getDropOut() > 0) {
if (false) {
//TODO drop connect
//Dup the weights... note that this does NOT depend on the minibatch size...
} else {
//Assume we dup the input
trainSizePerEx += inputType.arrayElementsPerExample();
}
}
//Also, during backprop: we do a preOut call -> gives us activations size equal to the output size
// which is modified in-place by loss function
trainSizePerEx += unsupervisedPerEx;
//RBM layer does not use caching
Map trainMode = new HashMap<>();
for (CacheMode cm : CacheMode.values()) {
trainMode.put(cm, trainSizePerEx);
}
return new LayerMemoryReport.Builder(layerName, RBM.class, inputType, outputType)
.standardMemory(numParams, updaterStateSize)
.workingMemory(0, unsupervisedPerEx, 0, unsupervisedPerEx)
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
public enum VisibleUnit {
BINARY, GAUSSIAN, SOFTMAX, LINEAR, IDENTITY
}
public enum HiddenUnit {
RECTIFIED, BINARY, GAUSSIAN, SOFTMAX, IDENTITY
}
private RBM(Builder builder) {
super(builder);
this.hiddenUnit = builder.hiddenUnit;
this.visibleUnit = builder.visibleUnit;
this.k = builder.k;
this.sparsity = builder.sparsity;
}
@AllArgsConstructor
public static class Builder extends BasePretrainNetwork.Builder {
private HiddenUnit hiddenUnit = HiddenUnit.BINARY;
private VisibleUnit visibleUnit = VisibleUnit.BINARY;
private int k = 1;
private double sparsity = 0f;
public Builder(HiddenUnit hiddenUnit, VisibleUnit visibleUnit) {
this.hiddenUnit = hiddenUnit;
this.visibleUnit = visibleUnit;
}
public Builder() {}
@Override
@SuppressWarnings("unchecked")
public RBM build() {
return new RBM(this);
}
// convergence iterations
public Builder k(int k) {
this.k = k;
return this;
}
public Builder hiddenUnit(HiddenUnit hiddenUnit) {
this.hiddenUnit = hiddenUnit;
return this;
}
public Builder visibleUnit(VisibleUnit visibleUnit) {
this.visibleUnit = visibleUnit;
return this;
}
public Builder sparsity(double sparsity) {
this.sparsity = sparsity;
return this;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy