org.deeplearning4j.nn.conf.layers.RnnOutputLayer Maven / Gradle / Ivy
package org.deeplearning4j.nn.conf.layers;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.util.LayerValidation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class RnnOutputLayer extends BaseOutputLayer {
private RnnOutputLayer(Builder builder) {
super(builder);
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection iterationListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams) {
LayerValidation.assertNInNOutSet("RnnOutputLayer", getLayerName(), layerIndex, getNIn(), getNOut());
org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer ret =
new org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return DefaultParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer index = " + layerIndex
+ ", layer name=\"" + getLayerName() + "\"): Expected RNN input, got " + inputType);
}
InputType.InputTypeRecurrent itr = (InputType.InputTypeRecurrent) inputType;
return InputType.recurrent(nOut, itr.getTimeSeriesLength());
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer name=\"" + getLayerName()
+ "\"): Expected RNN input, got " + inputType);
}
if (nIn <= 0 || override) {
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
this.nIn = r.getSize();
}
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, getLayerName());
}
public static class Builder extends BaseOutputLayer.Builder {
public Builder() {
}
public Builder(LossFunction lossFunction) {
lossFunction(lossFunction);
}
public Builder(ILossFunction lossFunction) {
this.lossFn = lossFunction;
}
@Override
@SuppressWarnings("unchecked")
public RnnOutputLayer build() {
return new RnnOutputLayer(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy