org.deeplearning4j.nn.graph.vertex.impl.L2Vertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.accum.distances.EuclideanDistance;
import org.nd4j.linalg.api.ops.impl.broadcast.BroadcastMulOp;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.ops.transforms.Transforms;
/**
* L2Vertex calculates the L2 least squares error of two inputs.
*
* For example, in Triplet Embedding you can input an anchor and a pos/neg class and use two parallel
* L2 vertices to calculate two real numbers which can be fed into a LossLayer to calculate TripletLoss.
*
* @author Justin Long (crockpotveggies)
*/
public class L2Vertex extends BaseGraphVertex {
private double eps;
public L2Vertex(ComputationGraph graph, String name, int vertexIndex, double eps) {
this(graph, name, vertexIndex, null, null, eps);
}
public L2Vertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, double eps) {
super(graph, name, vertexIndex, inputVertices, outputVertices);
this.eps = eps;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public boolean isOutputVertex() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: input not set");
INDArray a = inputs[0];
INDArray b = inputs[1];
int[] dimensions = new int[a.rank() - 1];
for (int i = 1; i < a.rank(); i++) {
dimensions[i - 1] = i;
}
return Nd4j.getExecutioner().exec(new EuclideanDistance(a, b), dimensions);
}
@Override
public Pair doBackward(boolean tbptt) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: error not set");
INDArray a = inputs[0];
INDArray b = inputs[1];
INDArray out = doForward(tbptt);
Transforms.max(out, eps, false); // in case of 0
INDArray dLdlambda = epsilon; //dL/dlambda aka 'epsilon' - from layer above
INDArray sNegHalf = out.rdiv(1.0); //s^(-1/2) = 1.0 / s^(1/2) = 1.0 / out
INDArray diff = a.sub(b);
INDArray first = dLdlambda.mul(sNegHalf); //Column vector for all cases
INDArray dLda;
INDArray dLdb;
if (a.rank() == 2) {
//2d case (MLPs etc)
dLda = diff.muliColumnVector(first);
dLdb = dLda.neg();
} else {
//RNN and CNN case - Broadcast along dimension 0
dLda = Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(diff, first, diff, 0));
dLdb = dLda.neg();
}
return new Pair<>(null, new INDArray[] {dLda, dLdb});
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public String toString() {
return "L2Vertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + ")";
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
//No op
if (maskArrays == null || maskArrays.length == 0) {
return null;
}
return new Pair<>(maskArrays[0], currentMaskState);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy