All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.graph.vertex.impl;

import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.Or;
import org.nd4j.linalg.factory.Nd4j;

/**
 * Adds the ability to reshape and flatten the tensor in the computation graph. This is the equivalent
 * of calling {@code .reshape(new int[]{})} on the input array to the vertex and passing the new shape
 * to the next layer. ReshapeVertex also ensures the shape is valid for the backward pass.
 *
 * @author Justin Long (crockpotveggies)
 */
public class ReshapeVertex extends BaseGraphVertex {

    private int[] newShape;

    public ReshapeVertex(ComputationGraph graph, String name, int vertexIndex, int[] newShape) {
        this(graph, name, vertexIndex, null, null, newShape);
    }

    public ReshapeVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
                    VertexIndices[] outputVertices, int[] newShape) {
        super(graph, name, vertexIndex, inputVertices, outputVertices);
        this.newShape = newShape;
    }

    @Override
    public boolean hasLayer() {
        return false;
    }

    @Override
    public boolean isOutputVertex() {
        return false;
    }

    @Override
    public Layer getLayer() {
        return null;
    }

    @Override
    public INDArray doForward(boolean training) {
        if (!canDoForward())
            throw new IllegalStateException("Cannot do forward pass: inputs not set");

        if (inputs.length > 1)
            throw new IllegalStateException("Reshape vertex requires a single input.");


        return inputs[0].reshape(inputs[0].ordering(), newShape);
    }

    @Override
    public Pair doBackward(boolean tbptt) {
        if (!canDoBackward())
            throw new IllegalStateException("Cannot do backward pass: errors not set");

        INDArray[] out = new INDArray[1];
        out[0] = epsilon.reshape(inputs[0].ordering(), inputs[0].shape());
        return new Pair<>(null, out);
    }

    @Override
    public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
        if (backpropGradientsViewArray != null)
            throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
    }

    @Override
    public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
                    int minibatchSize) {
        if (maskArrays == null) {
            return new Pair<>(null, currentMaskState);
        }

        //Most common case: all or none.
        //If there's only *some* mask arrays: assume the others (missing) are equivalent to all 1s
        //And for handling multiple masks: best strategy seems to be an OR operation
        //i.e., output is 1 if any of the input are 1s
        //Which means: if any masks are missing, output null (equivalent to no mask, or all steps present)
        //Otherwise do an element-wise OR operation

        for (INDArray arr : maskArrays) {
            if (arr == null) {
                return new Pair<>(null, currentMaskState);
            }
        }

        //At this point: all present. Do OR operation
        if (maskArrays.length == 1) {
            return new Pair<>(maskArrays[0], currentMaskState);
        } else {
            INDArray ret = maskArrays[0].dup(maskArrays[0].ordering());
            Nd4j.getExecutioner().exec(new Or(maskArrays[0], maskArrays[1], ret));
            for (int i = 2; i < maskArrays.length; i++) {
                Nd4j.getExecutioner().exec(new Or(maskArrays[i], ret, ret));
            }
            return new Pair<>(ret, currentMaskState);
        }
    }

    @Override
    public String toString() {
        return "ReshapeVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",shape="
                        + newShape.toString() + ")";
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy