org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
/**
* A ScaleVertex is used to scale the size of activations of a single layer
* For example, ResNet activations can be scaled in repeating blocks to keep variance
* under control.
*
* @author Justin Long (@crockpotveggies)
*/
public class ScaleVertex extends BaseGraphVertex {
private double scaleFactor;
public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, double scaleFactor) {
this(graph, name, vertexIndex, null, null, scaleFactor);
}
public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, double scaleFactor) {
super(graph, name, vertexIndex, inputVertices, outputVertices);
this.scaleFactor = scaleFactor;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public boolean isOutputVertex() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: inputs not set (ScaleVertex " + vertexName
+ " idx " + vertexIndex + ")");
if (inputs.length > 1)
throw new IllegalArgumentException(
"ScaleVertex (name " + vertexName + " idx " + vertexIndex + ") only supports 1 input.");
INDArray prod = inputs[0].dup();
prod.muli(scaleFactor);
return prod;
}
@Override
public Pair doBackward(boolean tbptt) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: errors not set (ScaleVertex " + vertexName
+ " idx " + vertexIndex + ")");
return new Pair<>(null, new INDArray[] {epsilon.muli(scaleFactor)});
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException(
"Vertex does not have gradients; gradients view array cannot be set here (ScaleVertex "
+ vertexName + " idx " + vertexIndex + ")");
}
@Override
public String toString() {
return "ScaleVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",scaleFactor="
+ scaleFactor + ")";
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
//No op
if (maskArrays == null || maskArrays.length == 0) {
return null;
}
return new Pair<>(maskArrays[0], currentMaskState);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy