org.deeplearning4j.nn.layers.ActivationLayer Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.layers;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
/**
* Activation Layer
*
* Used to apply activation on input and corresponding derivative on epsilon.
* Decouples activation from the layer type and ideal for cases when applying
* BatchNormLayer. For example, use "identity" activation on the layer prior to BatchNorm and
* apply this layer after the BatchNorm.
*/
public class ActivationLayer extends AbstractLayer {
public ActivationLayer(NeuralNetConfiguration conf) {
super(conf);
}
public ActivationLayer(NeuralNetConfiguration conf, INDArray input) {
super(conf, input);
}
@Override
public double calcL2(boolean backpropParamsOnly) {
return 0;
}
@Override
public double calcL1(boolean backpropParamsOnly) {
return 0;
}
@Override
public Type type() {
return Type.FEED_FORWARD;
}
@Override
public void fit(INDArray input) {}
@Override
public Pair backpropGradient(INDArray epsilon) {
INDArray delta = layerConf().getActivationFn().backprop(input.dup(), epsilon).getFirst(); //TODO handle activation function params
if (maskArray != null) {
delta.muliColumnVector(maskArray);
}
Gradient ret = new DefaultGradient();
return new Pair<>(ret, delta);
}
@Override
public INDArray activate(boolean training) {
if (input == null) {
throw new IllegalArgumentException("Cannot do forward pass with null input " + layerId());
}
applyDropOutIfNecessary(training);
INDArray in;
if (training) {
//dup required: need to keep original input for backprop
in = input.dup();
} else {
in = input;
}
//return Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(conf.getLayer().getActivationFunction(), in));
return layerConf().getActivationFn().getActivation(in, training);
}
@Override
public Layer transpose() {
throw new UnsupportedOperationException("Not supported - " + layerId());
}
@Override
public Layer clone() {
return new ActivationLayer(conf.clone());
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public Gradient calcGradient(Gradient layerError, INDArray indArray) {
throw new UnsupportedOperationException("Not supported - " + layerId());
}
@Override
public void merge(Layer layer, int batchSize) {
throw new UnsupportedOperationException("Not supported - " + layerId());
}
@Override
public INDArray activationMean() {
return activate(false);
}
@Override
public INDArray params() {
return null;
}
@Override
public INDArray preOutput(boolean training) {
return null;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy