All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.convolution.ConvolutionLayer Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */
package org.deeplearning4j.nn.layers.convolution;


import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.nn.params.ConvolutionParamInitializer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.Dropout;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.convolution.Convolution;
import org.nd4j.linalg.factory.Nd4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Arrays;
import java.util.Map;


/**
 * Convolution layer
 *
 * @author Adam Gibson (original impl), Alex Black (current version)
 */
public class ConvolutionLayer extends BaseLayer {
    protected static final Logger log = LoggerFactory.getLogger(ConvolutionLayer.class);

    protected INDArray i2d;
    protected ConvolutionHelper helper = null;
    protected ConvolutionMode convolutionMode;

    public ConvolutionLayer(NeuralNetConfiguration conf) {
        super(conf);
        initializeHelper();
        convolutionMode = ((org.deeplearning4j.nn.conf.layers.ConvolutionLayer) conf().getLayer()).getConvolutionMode();
    }

    public ConvolutionLayer(NeuralNetConfiguration conf, INDArray input) {
        super(conf, input);
        initializeHelper();
    }

    void initializeHelper() {
        try {
            helper = Class.forName("org.deeplearning4j.nn.layers.convolution.CudnnConvolutionHelper")
                            .asSubclass(ConvolutionHelper.class).newInstance();
            log.debug("CudnnConvolutionHelper successfully initialized");
            if (!helper.checkSupported()) {
                helper = null;
            }
        } catch (Throwable t) {
            if (!(t instanceof ClassNotFoundException)) {
                log.warn("Could not initialize CudnnConvolutionHelper", t);
            }
        }
    }

    @Override
    public double calcL2(boolean backpropParamsOnly) {
        if (!conf.isUseRegularization())
            return 0.0;

        double l2Sum = 0.0;
        for (Map.Entry entry : paramTable().entrySet()) {
            double l2 = conf.getL2ByParam(entry.getKey());
            if (l2 > 0) {
                double norm2 = getParam(entry.getKey()).norm2Number().doubleValue();
                l2Sum += 0.5 * l2 * norm2 * norm2;
            }
        }

        return l2Sum;
    }

    @Override
    public double calcL1(boolean backpropParamsOnly) {
        if (!conf.isUseRegularization())
            return 0.0;

        double l1Sum = 0.0;
        for (Map.Entry entry : paramTable().entrySet()) {
            double l1 = conf.getL1ByParam(entry.getKey());
            if (l1 > 0) {
                double norm1 = getParam(entry.getKey()).norm1Number().doubleValue();
                l1Sum += l1 * norm1;
            }
        }

        return l1Sum;
    }

    @Override
    public Type type() {
        return Type.CONVOLUTIONAL;
    }

    @Override
    public Pair backpropGradient(INDArray epsilon) {
        INDArray weights = getParam(ConvolutionParamInitializer.WEIGHT_KEY);

        int miniBatch = input.size(0);
        int inH = input.size(2);
        int inW = input.size(3);

        int outDepth = weights.size(0);
        int inDepth = weights.size(1);
        int kH = weights.size(2);
        int kW = weights.size(3);

        int[] kernel = layerConf().getKernelSize();
        int[] strides = layerConf().getStride();
        int[] pad;
        int[] outSize;
        if (convolutionMode == ConvolutionMode.Same) {
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode); //Also performs validation
            pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides);
        } else {
            pad = layerConf().getPadding();
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode); //Also performs validation
        }

        int outH = outSize[0];
        int outW = outSize[1];


        INDArray biasGradView = gradientViews.get(ConvolutionParamInitializer.BIAS_KEY);
        INDArray weightGradView = gradientViews.get(ConvolutionParamInitializer.WEIGHT_KEY); //4d, c order. Shape: [outDepth,inDepth,kH,kW]
        INDArray weightGradView2df = Shape
                        .newShapeNoCopy(weightGradView, new int[] {outDepth, inDepth * kH * kW}, false).transpose();



        INDArray delta;
        IActivation afn = layerConf().getActivationFn();

        Pair p = preOutput4d(true, true);
        delta = afn.backprop(p.getFirst(), epsilon).getFirst(); //TODO handle activation function params

        if (helper != null) {
            Pair ret = helper.backpropGradient(input, weights, delta, kernel, strides, pad,
                            biasGradView, weightGradView, afn, layerConf().getCudnnAlgoMode(),
                            layerConf().getCudnnBwdFilterAlgo(), layerConf().getCudnnBwdDataAlgo(), convolutionMode);
            if (ret != null) {
                return ret;
            }
        }

        delta = delta.permute(1, 0, 2, 3); //To shape: [outDepth,miniBatch,outH,outW]

        //Note: due to the permute in preOut, and the fact that we essentially do a preOut.muli(epsilon), this reshape
        // should be zero-copy; only possible exception being sometimes with the "identity" activation case
        INDArray delta2d = delta.reshape('c', new int[] {outDepth, miniBatch * outH * outW}); //Shape.newShapeNoCopy(delta,new int[]{outDepth,miniBatch*outH*outW},false);

        //Do im2col, but with order [miniB,outH,outW,depthIn,kH,kW]; but need to input [miniBatch,depth,kH,kW,outH,outW] given the current im2col implementation
        //To get this: create an array of the order we want, permute it to the order required by im2col implementation, and then do im2col on that
        //to get old order from required order: permute(0,3,4,5,1,2)
        INDArray im2col2d = p.getSecond(); //Re-use im2col2d array from forward pass if available; recalculate if not
        if (im2col2d == null) {
            INDArray col = Nd4j.createUninitialized(new int[] {miniBatch, outH, outW, inDepth, kH, kW}, 'c');
            INDArray col2 = col.permute(0, 3, 4, 5, 1, 2);
            Convolution.im2col(input, kH, kW, strides[0], strides[1], pad[0], pad[1],
                            convolutionMode == ConvolutionMode.Same, col2);
            //Shape im2col to 2d. Due to the permuting above, this should be a zero-copy reshape
            im2col2d = col.reshape('c', miniBatch * outH * outW, inDepth * kH * kW);
        }

        //Calculate weight gradients, using cc->c mmul.
        //weightGradView2df is f order, but this is because it's transposed from c order
        //Here, we are using the fact that AB = (B^T A^T)^T; output here (post transpose) is in c order, not usual f order
        Nd4j.gemm(im2col2d, delta2d, weightGradView2df, true, true, 1.0, 0.0);

        //Flatten 4d weights to 2d... this again is a zero-copy op (unless weights are not originally in c order for some reason)
        INDArray wPermuted = weights.permute(3, 2, 1, 0); //Start with c order weights, switch order to f order
        INDArray w2d = wPermuted.reshape('f', inDepth * kH * kW, outDepth);

        //Calculate epsilons for layer below, in 2d format (note: this is in 'image patch' format before col2im reduction)
        //Note: cc -> f mmul here, then reshape to 6d in f order
        INDArray epsNext2d = w2d.mmul(delta2d); //TODO can we reuse im2col array instead of allocating new result array?
        INDArray eps6d = Shape.newShapeNoCopy(epsNext2d, new int[] {kW, kH, inDepth, outW, outH, miniBatch}, true);

        //Calculate epsilonNext by doing im2col reduction.
        //Current col2im implementation expects input with order: [miniBatch,depth,kH,kW,outH,outW]
        //currently have [kH,kW,inDepth,outW,outH,miniBatch] -> permute first
        eps6d = eps6d.permute(5, 2, 1, 0, 4, 3);
        INDArray epsNextOrig = null;
        if (Nd4j.getWorkspaceManager().checkIfWorkspaceExists(ComputationGraph.workspaceExternal)
                        && Nd4j.getMemoryManager().getCurrentWorkspace() != Nd4j.getWorkspaceManager()
                                        .getWorkspaceForCurrentThread(ComputationGraph.workspaceExternal)) {
            try (MemoryWorkspace wsB = Nd4j.getWorkspaceManager()
                            .getWorkspaceForCurrentThread(ComputationGraph.workspaceExternal).notifyScopeBorrowed()) {
                epsNextOrig = Nd4j.create(new int[] {inDepth, miniBatch, inH, inW}, 'c');
            }
        } else
            epsNextOrig = Nd4j.create(new int[] {inDepth, miniBatch, inH, inW}, 'c');


        //Note: we are execute col2im in a way that the output array should be used in a stride 1 muli in the layer below... (same strides as zs/activations)
        INDArray epsNext = epsNextOrig.permute(1, 0, 2, 3);
        Convolution.col2im(eps6d, epsNext, strides[0], strides[1], pad[0], pad[1], inH, inW);

        Gradient retGradient = new DefaultGradient();
        delta2d.sum(biasGradView, 1); //biasGradView is initialized/zeroed first in sum op

        retGradient.setGradientFor(ConvolutionParamInitializer.BIAS_KEY, biasGradView);
        retGradient.setGradientFor(ConvolutionParamInitializer.WEIGHT_KEY, weightGradView, 'c');

        return new Pair<>(retGradient, epsNext);
    }

    /**
     * preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
     * non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
     * the public API
     */
    protected Pair preOutput4d(boolean training, boolean forBackprop) {
        return preOutput(training, forBackprop);
    }

    @Override
    public INDArray preOutput(boolean training) {
        return preOutput(training, false).getFirst();
    }

    /**
     * PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
     * instead of being calculated again.
     *
     * @param training    Train or test time (impacts dropout)
     * @param forBackprop If true: return the im2col2d array for re-use during backprop. False: return null for second
     *                    pair entry. Note that it may still be null in the case of CuDNN and the like.
     * @return            Pair of arrays: preOutput (activations) and optionally the im2col2d array
     */
    protected Pair preOutput(boolean training, boolean forBackprop) {
        INDArray weights = getParam(ConvolutionParamInitializer.WEIGHT_KEY);
        INDArray bias = getParam(ConvolutionParamInitializer.BIAS_KEY);
        if (conf.isUseDropConnect() && training && conf.getLayer().getDropOut() > 0) {
            weights = Dropout.applyDropConnect(this, ConvolutionParamInitializer.WEIGHT_KEY);
        }

        //Input validation: expect rank 4 matrix
        if (input.rank() != 4) {
            String layerName = conf.getLayer().getLayerName();
            if (layerName == null)
                layerName = "(not named)";
            throw new DL4JInvalidInputException("Got rank " + input.rank()
                            + " array as input to ConvolutionLayer (layer name = " + layerName + ", layer index = "
                            + index + ") with shape " + Arrays.toString(input.shape()) + ". "
                            + "Expected rank 4 array with shape [minibatchSize, layerInputDepth, inputHeight, inputWidth]."
                            + (input.rank() == 2
                                            ? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
                                            : "")
                            + " " + layerId());
        }

        int miniBatch = input.size(0);

        int outDepth = weights.size(0);
        int inDepth = weights.size(1);
        if (input.size(1) != inDepth) {
            String layerName = conf.getLayer().getLayerName();
            if (layerName == null)
                layerName = "(not named)";
            throw new DL4JInvalidInputException("Cannot do forward pass in Convolution layer (layer name = " + layerName
                            + ", layer index = " + index + "): input array depth does not match CNN layer configuration"
                            + " (data input depth = " + input.size(1) + ", [minibatch,inputDepth,height,width]="
                            + Arrays.toString(input.shape()) + "; expected" + " input depth = " + inDepth + ") "
                            + layerId());
        }
        int kH = weights.size(2);
        int kW = weights.size(3);

        int[] kernel = layerConf().getKernelSize();
        int[] strides = layerConf().getStride();

        int[] pad;
        int[] outSize;
        if (convolutionMode == ConvolutionMode.Same) {
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode); //Also performs validation
            pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {input.size(2), input.size(3)}, kernel,
                            strides);
        } else {
            pad = layerConf().getPadding();
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode); //Also performs validation
        }

        int outH = outSize[0];
        int outW = outSize[1];


        if (helper != null) {
            if (preOutput != null && forBackprop) {
                return new Pair<>(preOutput, null);
            }

            INDArray ret = helper.preOutput(input, weights, bias, kernel, strides, pad, layerConf().getCudnnAlgoMode(),
                            layerConf().getCudnnFwdAlgo(), convolutionMode);
            if (ret != null) {
                return new Pair<>(ret, null);
            }
        }

        if (preOutput != null && i2d != null && forBackprop) {
            return new Pair<>(preOutput, i2d);
        }

        //im2col in the required order: want [outW,outH,miniBatch,depthIn,kH,kW], but need to input [miniBatch,depth,kH,kW,outH,outW] given the current im2col implementation
        //To get this: create an array of the order we want, permute it to the order required by im2col implementation, and then do im2col on that
        //to get old order from required order: permute(0,3,4,5,1,2)
        //Post reshaping: rows are such that minibatch varies slowest, outW fastest as we step through the rows post-reshape
        INDArray col = Nd4j.createUninitialized(new int[] {miniBatch, outH, outW, inDepth, kH, kW}, 'c');
        INDArray col2 = col.permute(0, 3, 4, 5, 1, 2);
        Convolution.im2col(input, kH, kW, strides[0], strides[1], pad[0], pad[1],
                        convolutionMode == ConvolutionMode.Same, col2);

        INDArray im2col2d = Shape.newShapeNoCopy(col, new int[] {miniBatch * outH * outW, inDepth * kH * kW}, false);

        //Current order of weights: [depthOut,depthIn,kH,kW], c order
        //Permute to give [kW,kH,depthIn,depthOut], f order
        //Reshape to give [kW*kH*depthIn, depthOut]. This should always be zero-copy reshape, unless weights aren't in c order for some reason
        INDArray permutedW = weights.permute(3, 2, 1, 0);
        INDArray reshapedW = permutedW.reshape('f', kW * kH * inDepth, outDepth);

        //Do the MMUL; c and f orders in, f order out. output shape: [miniBatch*outH*outW,depthOut]
        INDArray z = null;
        if (Nd4j.getWorkspaceManager().checkIfWorkspaceExists(ComputationGraph.workspaceExternal)
                        && Nd4j.getMemoryManager().getCurrentWorkspace() != Nd4j.getWorkspaceManager()
                                        .getWorkspaceForCurrentThread(ComputationGraph.workspaceExternal)) {
            try (MemoryWorkspace wsB = Nd4j.getWorkspaceManager()
                            .getWorkspaceForCurrentThread(ComputationGraph.workspaceExternal).notifyScopeBorrowed()) {
                z = im2col2d.mmul(reshapedW);
            }
        } else
            z = im2col2d.mmul(reshapedW);

        //Add biases, before reshaping. Note that biases are [1,depthOut] and currently z is [miniBatch*outH*outW,depthOut] -> addiRowVector
        z.addiRowVector(bias);

        //Now, reshape to [outW,outH,miniBatch,outDepth], and permute to have correct output order: [miniBath,outDepth,outH,outW];
        z = Shape.newShapeNoCopy(z, new int[] {outW, outH, miniBatch, outDepth}, true);
        z = z.permute(2, 3, 1, 0);

        if (cacheMode != CacheMode.NONE
                        && Nd4j.getWorkspaceManager().checkIfWorkspaceExists(ComputationGraph.workspaceCache)) {

            try (MemoryWorkspace wsB = Nd4j.getWorkspaceManager()
                            .getWorkspaceForCurrentThread(ComputationGraph.workspaceCache).notifyScopeBorrowed()) {
                i2d = im2col2d.unsafeDuplication();
            }
        }

        return new Pair<>(z, forBackprop ? im2col2d : null);
    }

    @Override
    public INDArray activate(boolean training) {
        if (input == null) {
            throw new IllegalArgumentException("Cannot perform forward pass with null input " + layerId());
        }

        if (cacheMode == null)
            cacheMode = CacheMode.NONE;

        applyDropOutIfNecessary(training);

        INDArray z = preOutput(training);

        // we do cache only if cache workspace exists. Skip otherwise
        if (training && cacheMode != CacheMode.NONE
                        && Nd4j.getWorkspaceManager().checkIfWorkspaceExists(ComputationGraph.workspaceCache)) {
            try (MemoryWorkspace wsB = Nd4j.getWorkspaceManager()
                            .getWorkspaceForCurrentThread(ComputationGraph.workspaceCache).notifyScopeBorrowed()) {
                preOutput = z.unsafeDuplication();
            }
        }

        //String afn = conf.getLayer().getActivationFunction();
        IActivation afn = layerConf().getActivationFn();

        if (helper != null) {
            INDArray ret = helper.activate(z, layerConf().getActivationFn());
            if (ret != null) {
                return ret;
            }
        }

        INDArray activation = afn.getActivation(z, training);
        return activation;
    }

    @Override
    public Layer transpose() {
        throw new UnsupportedOperationException("Not supported - " + layerId());
    }

    @Override
    public boolean isPretrainLayer() {
        return false;
    }


    @Override
    public Gradient calcGradient(Gradient layerError, INDArray indArray) {
        throw new UnsupportedOperationException("Not supported " + layerId());
    }

    @Override
    public void fit(INDArray input) {}

    @Override
    public void merge(Layer layer, int batchSize) {
        throw new UnsupportedOperationException(layerId());
    }

    @Override
    public INDArray params() {
        //C order flattening, to match the gradient flattening order
        return Nd4j.toFlattened('c', params.values());
    }

    @Override
    public void setParams(INDArray params) {
        //Override, as base layer does f order parameter flattening by default
        setParams(params, 'c');
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy