org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer Maven / Gradle / Ivy
package org.deeplearning4j.nn.layers.convolution.subsampling;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
/**
* 1D (temporal) subsampling layer. Currently, we just subclass off the
* SubsamplingLayer and override the preOutput and backpropGradient methods.
* Specifically, since this layer accepts RNN (not CNN) InputTypes, we
* need to add a singleton fourth dimension before calling the respective
* superclass method, then remove it from the result.
*
* This approach treats a multivariate time series with L timesteps and
* P variables as an L x 1 x P image (L rows high, 1 column wide, P
* channels deep). The kernel should be H backpropGradient(INDArray epsilon) {
if (epsilon.rank() != 3)
throw new DL4JInvalidInputException("Got rank " + epsilon.rank()
+ " array as epsilon for Subsampling1DLayer backprop with shape "
+ Arrays.toString(epsilon.shape())
+ ". Expected rank 3 array with shape [minibatchSize, features, length]. " + layerId());
// add singleton fourth dimension to input and next layer's epsilon
INDArray origInput = input;
input = input.reshape(input.size(0), input.size(1), input.size(2), 1);
epsilon = epsilon.reshape(epsilon.size(0), epsilon.size(1), epsilon.size(2), 1);
// call 2D SubsamplingLayer's backpropGradient method
Pair gradientEpsNext = super.backpropGradient(epsilon);
INDArray epsNext = gradientEpsNext.getSecond();
// remove singleton fourth dimension from input and current epsilon
input = origInput;
epsNext = epsNext.reshape(epsNext.size(0), epsNext.size(1), epsNext.size(2));
return new Pair<>(gradientEpsNext.getFirst(), epsNext);
}
@Override
public INDArray activate(boolean training) {
if (input.rank() != 3)
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to Subsampling1DLayer with shape " + Arrays.toString(input.shape())
+ ". Expected rank 3 array with shape [minibatchSize, features, length]. " + layerId());
// add singleton fourth dimension to input
INDArray origInput = input;
input = input.reshape(input.size(0), input.size(1), input.size(2), 1);
// call 2D SubsamplingLayer's activate method
INDArray acts = super.activate(training);
// remove singleton fourth dimension from input and output activations
input = origInput;
acts = acts.reshape(acts.size(0), acts.size(1), acts.size(2));
return acts;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy