org.deeplearning4j.optimize.solvers.LineGradientDescent Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.optimize.solvers;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.optimize.api.StepFunction;
import org.deeplearning4j.optimize.api.TerminationCondition;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.Collection;
/**
* Stochastic Gradient Descent with Line Search
* @author Adam Gibson
*
*/
public class LineGradientDescent extends BaseOptimizer {
private static final long serialVersionUID = 6336124657542062284L;
public LineGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction,
Collection iterationListeners, Model model) {
super(conf, stepFunction, iterationListeners, model);
}
public LineGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction,
Collection iterationListeners,
Collection terminationConditions, Model model) {
super(conf, stepFunction, iterationListeners, terminationConditions, model);
}
@Override
public void preProcessLine() {
INDArray gradient = (INDArray) searchState.get(GRADIENT_KEY);
searchState.put(SEARCH_DIR, gradient.dup());
}
@Override
public void postStep(INDArray gradient) {
double norm2 = Nd4j.getBlasWrapper().level1().nrm2(gradient);
if (norm2 > stepMax)
searchState.put(SEARCH_DIR, gradient.dup().muli(stepMax / norm2));
else
searchState.put(SEARCH_DIR, gradient.dup());
searchState.put(GRADIENT_KEY, gradient.dup());
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy