org.deeplearning4j.util.ConvolutionUtils Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.util;
import org.deeplearning4j.exception.DL4JInvalidConfigException;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
/**
* Convolutional shape utilities
*
* @author Adam Gibson
*/
public class ConvolutionUtils {
private ConvolutionUtils() {}
/**
* Get the output size (height/width) for the given inpud data and CNN configuration
*
* @param inputData Input data
* @param kernel Kernel size (height/width)
* @param strides Strides (height/width)
* @param padding Padding (height/width)
* @return Output size: int[2] with output height/width
*/
public static int[] getOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding,
ConvolutionMode convolutionMode) {
int inH = inputData.size(2);
int inW = inputData.size(3);
if (convolutionMode != ConvolutionMode.Same && (kernel[0] <= 0 || kernel[0] > inH + 2 * padding[0])) {
throw new DL4JInvalidInputException(
"Invalid input data or configuration: kernel height and input height must satisfy 0 < kernel height <= input height + 2 * padding height. "
+ "\nGot kernel height = " + kernel[0] + ", input height = " + inH
+ " and padding height = " + padding[0] + " which do not satisfy 0 < "
+ kernel[0] + " <= " + (inH + 2 * padding[0])
+ getCommonErrorMsg(inputData, kernel, strides, padding));
}
if (convolutionMode != ConvolutionMode.Same && (kernel[1] <= 0 || kernel[1] > inW + 2 * padding[1])) {
throw new DL4JInvalidInputException(
"Invalid input data or configuration: kernel width and input width must satisfy 0 < kernel width <= input width + 2 * padding width. "
+ "\nGot kernel width = " + kernel[1] + ", input width = " + inW
+ " and padding width = " + padding[1] + " which do not satisfy 0 < "
+ kernel[1] + " <= " + (inW + 2 * padding[1])
+ "\nInput size: [numExamples,inputDepth,inputHeight,inputWidth]="
+ Arrays.toString(inputData.shape())
+ getCommonErrorMsg(inputData, kernel, strides, padding));
}
if (convolutionMode == ConvolutionMode.Strict) {
if ((inH - kernel[0] + 2 * padding[0]) % strides[0] != 0) {
double d = (inH - kernel[0] + 2 * padding[0]) / ((double) strides[0]) + 1.0;
String str = String.format("%.2f", d);
int truncated = (int) d;
int sameSize = (int) Math.ceil(inH / ((double) strides[0]));
throw new DL4JInvalidConfigException(
"Invalid input data or configuration: Combination of kernel size, stride and padding are not valid for given input height, using ConvolutionMode.Strict\n"
+ "ConvolutionMode.Strict requires: output height = (input height - kernelSize + 2*padding)/stride + 1 to be an integer. Got: ("
+ inH + " - " + kernel[0] + " + 2*" + padding[0] + ")/" + strides[0]
+ " + 1 = " + str + "\n"
+ "See \"Constraints on strides\" at http://cs231n.github.io/convolutional-networks/ and ConvolutionType enumeration Javadoc.\n"
+ "To truncate/crop the input, such that output height = floor(" + str
+ ") = " + truncated + ", use ConvolutionType.Truncate.\n"
+ "Alternatively use ConvolutionType.Same, which will use padding to give an output height of ceil("
+ inH + "/" + strides[0] + ")=" + sameSize
+ getCommonErrorMsg(inputData, kernel, strides, padding));
}
if ((inW - kernel[1] + 2 * padding[1]) % strides[1] != 0) {
double d = (inW - kernel[1] + 2 * padding[1]) / ((double) strides[1]) + 1.0;
String str = String.format("%.2f", d);
int truncated = (int) d;
int sameSize = (int) Math.ceil(inW / ((double) strides[1]));
throw new DL4JInvalidConfigException(
"Invalid input data or configuration: Combination of kernel size, stride and padding are not valid for given input width, using ConvolutionMode.Strict\n"
+ "ConvolutionMode.Strict requires: output width = (input - kernelSize + 2*padding)/stride + 1 to be an integer. Got: ("
+ inW + " - " + kernel[1] + " + 2*" + padding[1] + ")/" + strides[1]
+ " + 1 = " + str + "\n"
+ "See \"Constraints on strides\" at http://cs231n.github.io/convolutional-networks/ and ConvolutionType enumeration Javadoc.\n"
+ "To truncate/crop the input, such that output width = floor(" + str
+ ") = " + truncated + ", use ConvolutionType.Truncate.\n"
+ "Alternatively use ConvolutionType.Same, which will use padding to give an output width of ceil("
+ inW + "/" + strides[1] + ")=" + sameSize
+ getCommonErrorMsg(inputData, kernel, strides, padding));
}
} else if (convolutionMode == ConvolutionMode.Same) {
//'Same' padding mode:
//outH = ceil(inHeight / strideH) decimal division
//outW = ceil(inWidth / strideW) decimal division
//padHeightSum = ((outH - 1) * strideH + kH - inHeight)
//padTop = padHeightSum / 2 integer division
//padBottom = padHeghtSum - padTop
//padWidthSum = ((outW - 1) * strideW + kW - inWidth)
//padLeft = padWidthSum / 2 integer division
//padRight = padWidthSum - padLeft
int outH = (int) Math.ceil(inH / ((double) strides[0]));
int outW = (int) Math.ceil(inW / ((double) strides[1]));
return new int[] {outH, outW};
}
int hOut = (inH - kernel[0] + 2 * padding[0]) / strides[0] + 1;
int wOut = (inW - kernel[1] + 2 * padding[1]) / strides[1] + 1;
return new int[] {hOut, wOut};
}
private static String getCommonErrorMsg(INDArray inputData, int[] kernel, int[] strides, int[] padding) {
return "\nInput size: [numExamples,inputDepth,inputHeight,inputWidth]=" + Arrays.toString(inputData.shape())
+ ", kernel=" + Arrays.toString(kernel) + ", strides=" + Arrays.toString(strides) + ", padding="
+ Arrays.toString(padding);
}
/**
* Get top and left padding for same mode only.
*
* @param outSize
* @param inSize
* @param kernel
* @param strides
* @return
*/
public static int[] getSameModeTopLeftPadding(int[] outSize, int[] inSize, int[] kernel, int[] strides) {
int[] outPad = new int[2];
outPad[0] = ((outSize[0] - 1) * strides[0] + kernel[0] - inSize[0]) / 2; //Note that padBottom is 1 bigger than this if bracketed term is not divisible by 2
outPad[1] = ((outSize[1] - 1) * strides[1] + kernel[1] - inSize[1]) / 2; //As above
return outPad;
}
/**
* Get bottom and right padding for same mode only.
*
* @param outSize
* @param inSize
* @param kernel
* @param strides
* @return
*/
public static int[] getSameModeBottomRightPadding(int[] outSize, int[] inSize, int[] kernel, int[] strides) {
int[] outPad = new int[2];
outPad[0] = ((outSize[0] - 1) * strides[0] + kernel[0] - inSize[0] + 1) / 2; //Note that padTop is 1 smaller than this if bracketed term is not divisible by 2
outPad[1] = ((outSize[1] - 1) * strides[1] + kernel[1] - inSize[1] + 1) / 2; //As above
return outPad;
}
/**
* Get the height and width
* from the configuration
* @param conf the configuration to get height and width from
* @return the configuration to get height and width from
*/
public static int[] getHeightAndWidth(NeuralNetConfiguration conf) {
return getHeightAndWidth(
((org.deeplearning4j.nn.conf.layers.ConvolutionLayer) conf.getLayer()).getKernelSize());
}
/**
* @param conf the configuration to get
* the number of kernels from
* @return the number of kernels/filters to apply
*/
public static int numFeatureMap(NeuralNetConfiguration conf) {
return ((org.deeplearning4j.nn.conf.layers.ConvolutionLayer) conf.getLayer()).getNOut();
}
/**
* Get the height and width
* for an image
* @param shape the shape of the image
* @return the height and width for the image
*/
public static int[] getHeightAndWidth(int[] shape) {
if (shape.length < 2)
throw new IllegalArgumentException("No width and height able to be found: array must be at least length 2");
return new int[] {shape[shape.length - 1], shape[shape.length - 2]};
}
/**
* Returns the number of
* feature maps for a given shape (must be at least 3 dimensions
* @param shape the shape to get the
* number of feature maps for
* @return the number of feature maps
* for a particular shape
*/
public static int numChannels(int[] shape) {
if (shape.length < 4)
return 1;
return shape[1];
}
/**
* Perform validation on the CNN layer kernel/stride/padding. Expect 2d int[], with values > 0 for kernel size and
* stride, and values >= 0 for padding.
*
* @param kernelSize Kernel size array to check
* @param stride Stride array to check
* @param padding Padding array to check
*/
public static void validateCnnKernelStridePadding(int[] kernelSize, int[] stride, int[] padding) {
if (kernelSize == null || kernelSize.length != 2) {
throw new IllegalStateException("Invalid kernel size: expected int[] of length 2, got "
+ (kernelSize == null ? null : Arrays.toString(kernelSize)));
}
if (stride == null || stride.length != 2) {
throw new IllegalStateException("Invalid stride configuration: expected int[] of length 2, got "
+ (stride == null ? null : Arrays.toString(stride)));
}
if (padding == null || padding.length != 2) {
throw new IllegalStateException("Invalid padding configuration: expected int[] of length 2, got "
+ (padding == null ? null : Arrays.toString(padding)));
}
if (kernelSize[0] <= 0 || kernelSize[1] <= 0) {
throw new IllegalStateException(
"Invalid kernel size: values must be positive (> 0) for all dimensions. Got: "
+ Arrays.toString(kernelSize));
}
if (stride[0] <= 0 || stride[1] <= 0) {
throw new IllegalStateException(
"Invalid stride configuration: values must be positive (> 0) for all dimensions. Got: "
+ Arrays.toString(stride));
}
if (padding[0] < 0 || padding[1] < 0) {
throw new IllegalStateException(
"Invalid padding configuration: values must be >= 0 for all dimensions. Got: "
+ Arrays.toString(padding));
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy