org.deeplearning4j.nn.conf.graph.MergeVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.graph;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.ndarray.INDArray;
/** A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
* Exactly how this is done depends on the type of input.
* For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
* For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength])
* -> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
* For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height])
* -> [numExamples,depth1 + depth2,width,height]
* @author Alex Black
*/
public class MergeVertex extends GraphVertex {
@Override
public MergeVertex clone() {
return new MergeVertex();
}
@Override
public boolean equals(Object o) {
return o instanceof MergeVertex;
}
@Override
public int hashCode() {
return 433682566;
}
@Override
public int numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 2;
}
@Override
public int maxVertexInputs() {
return Integer.MAX_VALUE;
}
@Override
public String toString() {
return "MergeVertex()";
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams) {
return new org.deeplearning4j.nn.graph.vertex.impl.MergeVertex(graph, name, idx);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length == 1)
return vertexInputs[0];
InputType first = vertexInputs[0];
if (first.getType() == InputType.Type.CNNFlat) {
//TODO
//Merging flattened CNN format data could be messy?
throw new InvalidInputTypeException(
"Invalid input: MergeVertex cannot currently merge CNN data in flattened format. Got: "
+ vertexInputs);
} else if (first.getType() != InputType.Type.CNN) {
//FF or RNN data inputs
int size = 0;
InputType.Type type = null;
for (int i = 0; i < vertexInputs.length; i++) {
if (vertexInputs[i].getType() != first.getType()) {
throw new InvalidInputTypeException(
"Invalid input: MergeVertex cannot merge activations of different types:"
+ " first type = " + first.getType() + ", input type " + (i + 1)
+ " = " + vertexInputs[i].getType());
}
int thisSize;
switch (vertexInputs[i].getType()) {
case FF:
thisSize = ((InputType.InputTypeFeedForward) vertexInputs[i]).getSize();
type = InputType.Type.FF;
break;
case RNN:
thisSize = ((InputType.InputTypeRecurrent) vertexInputs[i]).getSize();
type = InputType.Type.RNN;
break;
default:
throw new IllegalStateException("Unknown input type: " + vertexInputs[i]); //Should never happen
}
if (thisSize <= 0) {//Size is not defined
size = -1;
} else {
size += thisSize;
}
}
if (size > 0) {
//Size is specified
if (type == InputType.Type.FF) {
return InputType.feedForward(size);
} else {
int tsLength = ((InputType.InputTypeRecurrent) vertexInputs[0]).getTimeSeriesLength();
return InputType.recurrent(size, tsLength);
}
} else {
//size is unknown
if (type == InputType.Type.FF) {
return InputType.feedForward(-1);
} else {
int tsLength = ((InputType.InputTypeRecurrent) vertexInputs[0]).getTimeSeriesLength();
return InputType.recurrent(-1, tsLength);
}
}
} else {
//CNN inputs... also check that the depth, width and heights match:
InputType.InputTypeConvolutional firstConv = (InputType.InputTypeConvolutional) first;
int fd = firstConv.getDepth();
int fw = firstConv.getWidth();
int fh = firstConv.getHeight();
int depthSum = fd;
for (int i = 1; i < vertexInputs.length; i++) {
if (vertexInputs[i].getType() != InputType.Type.CNN) {
throw new InvalidInputTypeException(
"Invalid input: MergeVertex cannot process activations of different types:"
+ " first type = " + InputType.Type.CNN + ", input type " + (i + 1)
+ " = " + vertexInputs[i].getType());
}
InputType.InputTypeConvolutional otherConv = (InputType.InputTypeConvolutional) vertexInputs[i];
int od = otherConv.getDepth();
int ow = otherConv.getWidth();
int oh = otherConv.getHeight();
if (fw != ow || fh != oh) {
throw new InvalidInputTypeException(
"Invalid input: MergeVertex cannot merge CNN activations of different width/heights:"
+ "first [depth,width,height] = [" + fd + "," + fw + "," + fh
+ "], input " + i + " = [" + od + "," + ow + "," + oh + "]");
}
depthSum += od;
}
return InputType.convolutional(fh, fw, depthSum);
}
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
InputType outputType = getOutputType(-1, inputTypes);
//TODO multiple input types
return new LayerMemoryReport.Builder(null, MergeVertex.class, inputTypes[0], outputType).standardMemory(0, 0) //No params
.workingMemory(0, 0, 0, 0) //No working memory in addition to activations/epsilons
.cacheMemory(0, 0) //No caching
.build();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy