org.deeplearning4j.nn.conf.layers.AbstractLSTM Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.params.LSTMParamInitializer;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSigmoid;
/**
* LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks
* http://www.cs.toronto.edu/~graves/phd.pdf
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public abstract class AbstractLSTM extends BaseRecurrentLayer {
protected double forgetGateBiasInit;
protected IActivation gateActivationFn = new ActivationSigmoid();
protected AbstractLSTM(Builder builder) {
super(builder);
this.forgetGateBiasInit = builder.forgetGateBiasInit;
this.gateActivationFn = builder.gateActivationFn;
}
@Override
public double getL1ByParam(String paramName) {
switch (paramName) {
case LSTMParamInitializer.INPUT_WEIGHT_KEY:
case LSTMParamInitializer.RECURRENT_WEIGHT_KEY:
return l1;
case LSTMParamInitializer.BIAS_KEY:
return l1Bias;
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
@Override
public double getL2ByParam(String paramName) {
switch (paramName) {
case LSTMParamInitializer.INPUT_WEIGHT_KEY:
case LSTMParamInitializer.RECURRENT_WEIGHT_KEY:
return l2;
case LSTMParamInitializer.BIAS_KEY:
return l2Bias;
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
@Override
public double getLearningRateByParam(String paramName) {
switch (paramName) {
case LSTMParamInitializer.INPUT_WEIGHT_KEY:
case LSTMParamInitializer.RECURRENT_WEIGHT_KEY:
return learningRate;
case LSTMParamInitializer.BIAS_KEY:
if (!Double.isNaN(biasLearningRate)) {
//Bias learning rate has been explicitly set
return biasLearningRate;
} else {
return learningRate;
}
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
@AllArgsConstructor
@NoArgsConstructor
public static abstract class Builder> extends BaseRecurrentLayer.Builder {
protected double forgetGateBiasInit = 1.0;
protected IActivation gateActivationFn = new ActivationSigmoid();
/** Set forget gate bias initalizations. Values in range 1-5 can potentially
* help with learning or longer-term dependencies.
*/
public T forgetGateBiasInit(double biasInit) {
this.forgetGateBiasInit = biasInit;
return (T) this;
}
/**
* Activation function for the LSTM gates.
* Note: This should be bounded to range 0-1: sigmoid or hard sigmoid, for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public T gateActivationFunction(String gateActivationFn) {
return (T) gateActivationFunction(Activation.fromString(gateActivationFn));
}
/**
* Activation function for the LSTM gates.
* Note: This should be bounded to range 0-1: sigmoid or hard sigmoid, for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public T gateActivationFunction(Activation gateActivationFn) {
return (T) gateActivationFunction(gateActivationFn.getActivationFunction());
}
/**
* Activation function for the LSTM gates.
* Note: This should be bounded to range 0-1: sigmoid or hard sigmoid, for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public T gateActivationFunction(IActivation gateActivationFn) {
this.gateActivationFn = gateActivationFn;
return (T) this;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy