org.deeplearning4j.nn.conf.layers.LocalResponseNormalization Maven / Gradle / Ivy
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
/**
* Created by nyghtowl on 10/29/15.
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class LocalResponseNormalization extends Layer {
// Defaults as per http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
//Set defaults here as well as in builder, in case users use no-arg constructor instead of builder
protected double n = 5; // # adjacent kernal maps
protected double k = 2; // constant (e.g. scale)
protected double beta = 0.75; // decay rate
protected double alpha = 1e-4; // decay rate
private LocalResponseNormalization(Builder builder) {
super(builder);
this.k = builder.k;
this.n = builder.n;
this.alpha = builder.alpha;
this.beta = builder.beta;
}
@Override
public LocalResponseNormalization clone() {
LocalResponseNormalization clone = (LocalResponseNormalization) super.clone();
return clone;
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection iterationListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams) {
org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization ret =
new org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return EmptyParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.CNN) {
throw new IllegalStateException(
"Invalid input type for LRN layer (layer index = " + layerIndex + ", layer name = \""
+ getLayerName() + "\"): Expected input of type CNN, got " + inputType);
}
return inputType;
}
@Override
public void setNIn(InputType inputType, boolean override) {
//No op
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException(
"Invalid input type for LRN layer (layer name = \"" + getLayerName() + "\"): null");
}
return InputTypeUtil.getPreProcessorForInputTypeCnnLayers(inputType, getLayerName());
}
@Override
public double getL1ByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public double getL2ByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public double getLearningRateByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public boolean isPretrainParam(String paramName) {
return false; //No params in LRN
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
int actElementsPerEx = inputType.arrayElementsPerExample();
//Forward pass: 3x input size as working memory, in addition to output activations
//Backward pass: 2x input size as working memory, in addition to epsilons
return new LayerMemoryReport.Builder(layerName, DenseLayer.class, inputType, inputType).standardMemory(0, 0)
.workingMemory(0, 2 * actElementsPerEx, 0, 3 * actElementsPerEx)
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching in DenseLayer
.build();
}
@AllArgsConstructor
public static class Builder extends Layer.Builder {
// defaults based on AlexNet model
private double k = 2;
private double n = 5;
private double alpha = 1e-4;
private double beta = 0.75;
public Builder(double k, double alpha, double beta) {
this.k = k;
this.alpha = alpha;
this.beta = beta;
}
public Builder() {}
/**
* LRN scaling constant k. Default: 2
*
* @param k
*/
public Builder k(double k) {
this.k = k;
return this;
}
/**
* Number of adjacent kernel maps to use when doing LRN. default: 5
*
* @param n Number of adjacent kernel maps
*/
public Builder n(double n) {
this.n = n;
return this;
}
/**
* LRN scaling constant alpha. Default: 1e-4
*
* @param alpha Scaling constant
*/
public Builder alpha(double alpha) {
this.alpha = alpha;
return this;
}
/**
* Scaling constant beta. Default: 0.75
*
* @param beta Scaling constant
*/
public Builder beta(double beta) {
this.beta = beta;
return this;
}
@Override
public LocalResponseNormalization build() {
return new LocalResponseNormalization(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy