org.deeplearning4j.nn.conf.layers.OutputLayer Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.util.LayerValidation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import java.util.Collection;
import java.util.Map;
/**
* Output layer with different objective co-occurrences for different objectives.
* This includes classification as well as regression
*
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class OutputLayer extends BaseOutputLayer {
protected OutputLayer(Builder builder) {
super(builder);
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection iterationListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams) {
LayerValidation.assertNInNOutSet("OutputLayer", getLayerName(), layerIndex, getNIn(), getNOut());
org.deeplearning4j.nn.layers.OutputLayer ret = new org.deeplearning4j.nn.layers.OutputLayer(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return DefaultParamInitializer.getInstance();
}
@NoArgsConstructor
public static class Builder extends BaseOutputLayer.Builder {
public Builder(LossFunction lossFunction) {
super.lossFunction(lossFunction);
}
public Builder(ILossFunction lossFunction) {
this.lossFn = lossFunction;
}
@Override
@SuppressWarnings("unchecked")
public OutputLayer build() {
return new OutputLayer(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy