org.deeplearning4j.nn.graph.util.ComputationGraphUtil Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.util;
import org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;
public class ComputationGraphUtil {
private ComputationGraphUtil() {}
/** Convert a DataSet to the equivalent MultiDataSet */
public static MultiDataSet toMultiDataSet(DataSet dataSet) {
INDArray f = dataSet.getFeatures();
INDArray l = dataSet.getLabels();
INDArray fMask = dataSet.getFeaturesMaskArray();
INDArray lMask = dataSet.getLabelsMaskArray();
INDArray[] fNew = f == null ? null : new INDArray[] {f};
INDArray[] lNew = l == null ? null : new INDArray[] {l};
INDArray[] fMaskNew = (fMask != null ? new INDArray[] {fMask} : null);
INDArray[] lMaskNew = (lMask != null ? new INDArray[] {lMask} : null);
return new org.nd4j.linalg.dataset.MultiDataSet(fNew, lNew, fMaskNew, lMaskNew);
}
/** Convert a DataSetIterator to a MultiDataSetIterator, via an adaptor class */
public static MultiDataSetIterator toMultiDataSetIterator(DataSetIterator iterator) {
return new MultiDataSetIteratorAdapter(iterator);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy