org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.nd4j.linalg.primitives.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.Arrays;
/** SubsetVertex is used to select a subset of the activations out of another GraphVertex.
* For example, a subset of the activations out of a layer.
* Note that this subset is specifying by means of an interval of the original activations.
* For example, to get the first 10 activations of a layer (or, first 10 features out of a CNN layer) use
* new SubsetVertex(0,9).
* In the case of convolutional (4d) activations, this is done along depth.
* @author Alex Black
*/
public class SubsetVertex extends BaseGraphVertex {
private int from;
private int to; //inclusive
private int[] forwardShape;
public SubsetVertex(ComputationGraph graph, String name, int vertexIndex, int from, int to) {
this(graph, name, vertexIndex, null, null, from, to);
}
public SubsetVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, int from, int to) {
super(graph, name, vertexIndex, inputVertices, outputVertices);
this.from = from;
this.to = to;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public boolean isOutputVertex() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: input not set");
forwardShape = Arrays.copyOf(inputs[0].shape(), inputs[0].rank());
switch (inputs[0].rank()) {
case 2:
return inputs[0].get(NDArrayIndex.all(), NDArrayIndex.interval(from, to, true));
case 3:
return inputs[0].get(NDArrayIndex.all(), NDArrayIndex.interval(from, to, true), NDArrayIndex.all());
case 4:
return inputs[0].get(NDArrayIndex.all(), NDArrayIndex.interval(from, to, true), NDArrayIndex.all(),
NDArrayIndex.all());
default:
throw new UnsupportedOperationException(
"Cannot get subset for activations of rank " + inputs[0].rank());
}
}
@Override
public Pair doBackward(boolean tbptt) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: error not set");
INDArray out = Nd4j.zeros(forwardShape);
switch (forwardShape.length) {
case 2:
out.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(from, to, true)}, epsilon);
break;
case 3:
out.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(from, to, true),
NDArrayIndex.all()}, epsilon);
break;
case 4:
out.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(from, to, true),
NDArrayIndex.all(), NDArrayIndex.all()}, epsilon);
break;
default:
throw new RuntimeException("Invalid activation rank"); //Should never happen
}
return new Pair<>(null, new INDArray[] {out});
}
@Override
public String toString() {
return "SubsetVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",fromIdx=" + from
+ ",toIdx=" + to + ")";
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
//No op: subset just provides part of the activations for each example (or time step)
if (maskArrays == null || maskArrays.length == 0) {
return null;
}
return new Pair<>(maskArrays[0], currentMaskState);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy