All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.recurrent.LSTMHelpers Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.nn.layers.recurrent;

import lombok.extern.slf4j.Slf4j;
import org.nd4j.linalg.primitives.Pair;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.AbstractLSTM;
import org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.util.Dropout;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSigmoid;
import org.nd4j.linalg.api.blas.Level1;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.TimesOneMinus;
import org.nd4j.linalg.api.ops.impl.transforms.arithmetic.MulOp;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
import static org.nd4j.linalg.indexing.NDArrayIndex.point;

/**
 *
 * RNN tutorial: http://deeplearning4j.org/usingrnns.html
 * READ THIS FIRST if you want to understand what the heck is happening here.
 *
 * Shared code for the standard "forwards" LSTM RNN and the bidirectional LSTM RNN
 * This was extracted from GravesLSTM and refactored into static helper functions.  The general reasoning for this was
 * so we only have math in one place, instead of two.
 *
 * Based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks
 * http://www.cs.toronto.edu/~graves/phd.pdf
 * See also for full/vectorized equations (and a comparison to other LSTM variants):
 * Greff et al. 2015, "LSTM: A Search Space Odyssey", pg11.
 * 

* When 'hasPeepholeConnections' is true, this is the "vanilla" variant in said paper
* When 'hasPeepholeConnections' is false, this is the "no peephole" variant
* http://arxiv.org/pdf/1503.04069.pdf * * * @author Alex Black (LSTM implementations) * @author Benjamin Joseph (refactoring for bidirectional LSTM) */ @Slf4j public class LSTMHelpers { // public static final String SIGMOID = "sigmoid"; private LSTMHelpers() {} /** * Returns FwdPassReturn object with activations/INDArrays. Allows activateHelper to be used for forward pass, backward pass * and rnnTimeStep whilst being reasonably efficient for all */ static public FwdPassReturn activateHelper(final BaseLayer layer, final NeuralNetConfiguration conf, final IActivation gateActivationFn, //Activation function for the gates - sigmoid or hard sigmoid (must be found in range 0 to 1) final INDArray input, final INDArray recurrentWeights, //Shape: [hiddenLayerSize,4*hiddenLayerSize+3]; order: [wI,wF,wO,wG,wFF,wOO,wGG] final INDArray originalInputWeights, //Shape: [n^(L-1),4*hiddenLayerSize]; order: [wi,wf,wo,wg] final INDArray biases, //Shape: [4,hiddenLayerSize]; order: [bi,bf,bo,bg]^T final boolean training, final INDArray originalPrevOutputActivations, final INDArray originalPrevMemCellState, boolean forBackprop, boolean forwards, final String inputWeightKey, INDArray maskArray, //Input mask: should only be used with bidirectional RNNs + variable length final boolean hasPeepholeConnections, //True for GravesLSTM, false for LSTM final LSTMHelper helper, final CacheMode cacheMode // cacheMode for layer calling this helper ) { //Mini-batch data format: for mini-batch size m, nIn inputs, and T time series length //Data has shape [m,nIn,T]. Layer activations/output has shape [m,nHiddenUnits,T] if (input == null || input.length() == 0) throw new IllegalArgumentException("Invalid input: not set or 0 length"); INDArray inputWeights = originalInputWeights; INDArray prevOutputActivations = originalPrevOutputActivations; boolean is2dInput = input.rank() < 3; //Edge case of T=1, may have shape [m,nIn], equiv. to [m,nIn,1] int timeSeriesLength = (is2dInput ? 1 : input.size(2)); int hiddenLayerSize = recurrentWeights.size(0); int miniBatchSize = input.size(0); INDArray prevMemCellState; if (originalPrevMemCellState == null) { prevMemCellState = Nd4j.create(new int[] {miniBatchSize, hiddenLayerSize}, 'f'); } else { prevMemCellState = originalPrevMemCellState.dup('f'); } INDArray recurrentWeightsIFOG = recurrentWeights .get(NDArrayIndex.all(), NDArrayIndex.interval(0, 4 * hiddenLayerSize)).dup('f'); //Apply dropconnect to input (not recurrent) weights only: if (conf.isUseDropConnect() && training && conf.getLayer().getDropOut() > 0) { inputWeights = Dropout.applyDropConnect(layer, inputWeightKey); } INDArray wFFTranspose = null; INDArray wOOTranspose = null; INDArray wGGTranspose = null; if (hasPeepholeConnections) { wFFTranspose = recurrentWeights .get(NDArrayIndex.all(), interval(4 * hiddenLayerSize, 4 * hiddenLayerSize + 1)) .transpose(); //current wOOTranspose = recurrentWeights .get(NDArrayIndex.all(), interval(4 * hiddenLayerSize + 1, 4 * hiddenLayerSize + 2)) .transpose(); //current wGGTranspose = recurrentWeights .get(NDArrayIndex.all(), interval(4 * hiddenLayerSize + 2, 4 * hiddenLayerSize + 3)) .transpose(); //previous if (timeSeriesLength > 1 || forBackprop) { wFFTranspose = Shape.toMmulCompatible(wFFTranspose); wOOTranspose = Shape.toMmulCompatible(wOOTranspose); wGGTranspose = Shape.toMmulCompatible(wGGTranspose); } } //Allocate arrays for activations: boolean sigmoidGates = gateActivationFn instanceof ActivationSigmoid; IActivation afn = layer.layerConf().getActivationFn(); INDArray outputActivations = null; FwdPassReturn toReturn = new FwdPassReturn(); if (forBackprop) { toReturn.fwdPassOutputAsArrays = new INDArray[timeSeriesLength]; toReturn.memCellState = new INDArray[timeSeriesLength]; toReturn.memCellActivations = new INDArray[timeSeriesLength]; toReturn.iz = new INDArray[timeSeriesLength]; toReturn.ia = new INDArray[timeSeriesLength]; toReturn.fa = new INDArray[timeSeriesLength]; toReturn.oa = new INDArray[timeSeriesLength]; toReturn.ga = new INDArray[timeSeriesLength]; if (!sigmoidGates) { toReturn.fz = new INDArray[timeSeriesLength]; toReturn.oz = new INDArray[timeSeriesLength]; toReturn.gz = new INDArray[timeSeriesLength]; } if (cacheMode != CacheMode.NONE) { try (MemoryWorkspace ws = Nd4j.getWorkspaceManager() .getWorkspaceForCurrentThread(ComputationGraph.workspaceCache).notifyScopeBorrowed()) { outputActivations = Nd4j.create(new int[] {miniBatchSize, hiddenLayerSize, timeSeriesLength}, 'f'); //F order to keep time steps together toReturn.fwdPassOutput = outputActivations; } } } else { outputActivations = Nd4j.create(new int[] {miniBatchSize, hiddenLayerSize, timeSeriesLength}, 'f'); //F order to keep time steps together toReturn.fwdPassOutput = outputActivations; } Level1 l1BLAS = Nd4j.getBlasWrapper().level1(); //Input validation: check input data matches nIn if (input.size(1) != inputWeights.size(0)) { throw new DL4JInvalidInputException("Received input with size(1) = " + input.size(1) + " (input array shape = " + Arrays.toString(input.shape()) + "); input.size(1) must match layer nIn size (nIn = " + inputWeights.size(0) + ")"); } //Input validation: check that if past state is provided, that it has same //These can be different if user forgets to call rnnClearPreviousState() between calls of rnnTimeStep if (prevOutputActivations != null && prevOutputActivations.size(0) != input.size(0)) { throw new DL4JInvalidInputException("Previous activations (stored state) number of examples = " + prevOutputActivations.size(0) + " but input array number of examples = " + input.size(0) + ". Possible cause: using rnnTimeStep() without calling" + " rnnClearPreviousState() between different sequences?"); } //initialize prevOutputActivations to zeroes if (prevOutputActivations == null) { prevOutputActivations = Nd4j.zeros(new int[] {miniBatchSize, hiddenLayerSize}); } if (helper != null) { FwdPassReturn ret = helper.activate(layer, conf, gateActivationFn, input, recurrentWeights, inputWeights, biases, training, prevOutputActivations, prevMemCellState, forBackprop, forwards, inputWeightKey, maskArray, hasPeepholeConnections); if (ret != null) { return ret; } } for (int iTimeIndex = 0; iTimeIndex < timeSeriesLength; iTimeIndex++) { int time = iTimeIndex; if (!forwards) { time = timeSeriesLength - iTimeIndex - 1; } INDArray miniBatchData = (is2dInput ? input : input.tensorAlongDimension(time, 1, 0)); //[Expected shape: [m,nIn]. Also deals with edge case of T=1, with 'time series' data of shape [m,nIn], equiv. to [m,nIn,1] miniBatchData = Shape.toMmulCompatible(miniBatchData); // if we're using cache here - let's create ifogActivations within cache workspace, so all views from this array will be valid in cache if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); //Calculate activations for: network input + forget, output, input modulation gates. Next 3 lines are first part of those INDArray ifogActivations = miniBatchData.mmul(inputWeights); //Shape: [miniBatch,4*layerSize] if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); Nd4j.gemm(prevOutputActivations, recurrentWeightsIFOG, ifogActivations, false, false, 1.0, 1.0); ifogActivations.addiRowVector(biases); INDArray inputActivations = ifogActivations.get(NDArrayIndex.all(), NDArrayIndex.interval(0, hiddenLayerSize)); if (forBackprop) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); toReturn.iz[time] = inputActivations.dup('f'); if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); } layer.layerConf().getActivationFn().getActivation(inputActivations, training); if (forBackprop) toReturn.ia[time] = inputActivations; INDArray forgetGateActivations = ifogActivations.get(NDArrayIndex.all(), NDArrayIndex.interval(hiddenLayerSize, 2 * hiddenLayerSize)); if (hasPeepholeConnections) { INDArray pmcellWFF = prevMemCellState.dup('f').muliRowVector(wFFTranspose); l1BLAS.axpy(pmcellWFF.length(), 1.0, pmcellWFF, forgetGateActivations); //y = a*x + y i.e., forgetGateActivations.addi(pmcellWFF) } //Above line: treats matrix as a vector. Can only do this because we're sure both pwcelWFF and forgetGateACtivations are f order, offset 0 and have same strides if (forBackprop && !sigmoidGates) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); toReturn.fz[time] = forgetGateActivations.dup('f'); //Forget gate pre-out (z) if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); } gateActivationFn.getActivation(forgetGateActivations, training); if (forBackprop) toReturn.fa[time] = forgetGateActivations; INDArray inputModGateActivations = ifogActivations.get(NDArrayIndex.all(), NDArrayIndex.interval(3 * hiddenLayerSize, 4 * hiddenLayerSize)); if (hasPeepholeConnections) { INDArray pmcellWGG = prevMemCellState.dup('f').muliRowVector(wGGTranspose); l1BLAS.axpy(pmcellWGG.length(), 1.0, pmcellWGG, inputModGateActivations); //inputModGateActivations.addi(pmcellWGG) } if (forBackprop && !sigmoidGates) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); toReturn.gz[time] = inputModGateActivations.dup('f'); //Input modulation gate pre-out (z) if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); } gateActivationFn.getActivation(inputModGateActivations, training); if (forBackprop) toReturn.ga[time] = inputModGateActivations; //Memory cell state INDArray currentMemoryCellState; INDArray inputModMulInput; if (forBackprop) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); currentMemoryCellState = prevMemCellState.dup('f').muli(forgetGateActivations); if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); // this variable isn't stored in cache inputModMulInput = inputModGateActivations.dup('f').muli(inputActivations); } else { currentMemoryCellState = forgetGateActivations.muli(prevMemCellState); inputModMulInput = inputModGateActivations.muli(inputActivations); } l1BLAS.axpy(currentMemoryCellState.length(), 1.0, inputModMulInput, currentMemoryCellState); //currentMemoryCellState.addi(inputModMulInput) INDArray outputGateActivations = ifogActivations.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 3 * hiddenLayerSize)); if (hasPeepholeConnections) { INDArray pmcellWOO = currentMemoryCellState.dup('f').muliRowVector(wOOTranspose); l1BLAS.axpy(pmcellWOO.length(), 1.0, pmcellWOO, outputGateActivations); //outputGateActivations.addi(pmcellWOO) } if (forBackprop && !sigmoidGates) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); toReturn.oz[time] = outputGateActivations.dup('f'); //Output gate activations if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); } gateActivationFn.getActivation(outputGateActivations, training); if (forBackprop) toReturn.oa[time] = outputGateActivations; ////////////// same as with iFogActivations - if we use cache, let's create this array right there if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); //LSTM unit outputs: INDArray currMemoryCellActivation = afn.getActivation(currentMemoryCellState.dup('f'), training); if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); /////////////////// INDArray currHiddenUnitActivations; if (forBackprop) { if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeBorrowed(); currHiddenUnitActivations = currMemoryCellActivation.dup('f').muli(outputGateActivations); //Expected shape: [m,hiddenLayerSize] if (cacheMode != CacheMode.NONE) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(ComputationGraph.workspaceCache) .notifyScopeLeft(); } else { currHiddenUnitActivations = currMemoryCellActivation.muli(outputGateActivations); //Expected shape: [m,hiddenLayerSize] } if (maskArray != null) { //Mask array is present: bidirectional RNN -> need to zero out these activations to avoid // incorrectly using activations from masked time steps (i.e., want 0 initialization in both directions) //We *also* need to apply this to the memory cells, as they are carried forward //Mask array has shape [minibatch, timeSeriesLength] -> get column INDArray timeStepMaskColumn = maskArray.getColumn(time); currHiddenUnitActivations.muliColumnVector(timeStepMaskColumn); currentMemoryCellState.muliColumnVector(timeStepMaskColumn); } if (forBackprop) { toReturn.fwdPassOutputAsArrays[time] = currHiddenUnitActivations; toReturn.memCellState[time] = currentMemoryCellState; toReturn.memCellActivations[time] = currMemoryCellActivation; if (cacheMode != CacheMode.NONE) { outputActivations.tensorAlongDimension(time, 1, 0).assign(currHiddenUnitActivations); } } else { outputActivations.tensorAlongDimension(time, 1, 0).assign(currHiddenUnitActivations); } prevOutputActivations = currHiddenUnitActivations; prevMemCellState = currentMemoryCellState; // no need to dup here, if that's cache - it's already within Cache workspace toReturn.lastAct = currHiddenUnitActivations; // the same as above, already in cache toReturn.lastMemCell = currentMemoryCellState; } //toReturn.leverageTo(ComputationGraph.workspaceExternal); toReturn.prevAct = originalPrevOutputActivations; toReturn.prevMemCell = originalPrevMemCellState; return toReturn; } static public Pair backpropGradientHelper(final NeuralNetConfiguration conf, final IActivation gateActivationFn, final INDArray input, final INDArray recurrentWeights, //Shape: [hiddenLayerSize,4*hiddenLayerSize+3]; order: [wI,wF,wO,wG,wFF,wOO,wGG] final INDArray inputWeights, //Shape: [n^(L-1),4*hiddenLayerSize]; order: [wi,wf,wo,wg] final INDArray epsilon, final boolean truncatedBPTT, final int tbpttBackwardLength, final FwdPassReturn fwdPass, final boolean forwards, final String inputWeightKey, final String recurrentWeightKey, final String biasWeightKey, final Map gradientViews, INDArray maskArray, //Input mask: should only be used with bidirectional RNNs + variable length final boolean hasPeepholeConnections, //True for GravesLSTM, false for LSTM final LSTMHelper helper) { //Expect errors to have shape: [miniBatchSize,n^(L+1),timeSeriesLength] int hiddenLayerSize = recurrentWeights.size(0); //i.e., n^L int prevLayerSize = inputWeights.size(0); //n^(L-1) int miniBatchSize = epsilon.size(0); boolean is2dInput = epsilon.rank() < 3; //Edge case: T=1 may have shape [miniBatchSize,n^(L+1)], equiv. to [miniBatchSize,n^(L+1),1] int timeSeriesLength = (is2dInput ? 1 : epsilon.size(2)); INDArray wFFTranspose = null; INDArray wOOTranspose = null; INDArray wGGTranspose = null; if (hasPeepholeConnections) { wFFTranspose = recurrentWeights.get(NDArrayIndex.all(), point(4 * hiddenLayerSize)).transpose(); wOOTranspose = recurrentWeights.get(NDArrayIndex.all(), point(4 * hiddenLayerSize + 1)).transpose(); wGGTranspose = recurrentWeights.get(NDArrayIndex.all(), point(4 * hiddenLayerSize + 2)).transpose(); } INDArray wIFOG = recurrentWeights.get(NDArrayIndex.all(), NDArrayIndex.interval(0, 4 * hiddenLayerSize)); //F order here so that content for time steps are together INDArray epsilonNext = Nd4j.create(new int[] {miniBatchSize, prevLayerSize, timeSeriesLength}, 'f'); //i.e., what would be W^L*(delta^L)^T. Shape: [m,n^(L-1),T] INDArray nablaCellStateNext = null; INDArray deltaifogNext = Nd4j.create(new int[] {miniBatchSize, 4 * hiddenLayerSize}, 'f'); INDArray deltaiNext = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(0, hiddenLayerSize)); INDArray deltafNext = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(hiddenLayerSize, 2 * hiddenLayerSize)); INDArray deltaoNext = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 3 * hiddenLayerSize)); INDArray deltagNext = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(3 * hiddenLayerSize, 4 * hiddenLayerSize)); Level1 l1BLAS = Nd4j.getBlasWrapper().level1(); int endIdx = 0; if (truncatedBPTT) { endIdx = Math.max(0, timeSeriesLength - tbpttBackwardLength); } //Get gradients. Note that we have to manually zero these, as they might not be initialized (or still has data from last iteration) //Also note that they are in f order (as per param initializer) so can be used in gemm etc INDArray iwGradientsOut = gradientViews.get(inputWeightKey); INDArray rwGradientsOut = gradientViews.get(recurrentWeightKey); //Order: {I,F,O,G,FF,OO,GG} INDArray bGradientsOut = gradientViews.get(biasWeightKey); iwGradientsOut.assign(0); rwGradientsOut.assign(0); bGradientsOut.assign(0); INDArray rwGradientsIFOG = rwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.interval(0, 4 * hiddenLayerSize)); INDArray rwGradientsFF = null; INDArray rwGradientsOO = null; INDArray rwGradientsGG = null; if (hasPeepholeConnections) { rwGradientsFF = rwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.point(4 * hiddenLayerSize)); rwGradientsOO = rwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.point(4 * hiddenLayerSize + 1)); rwGradientsGG = rwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.point(4 * hiddenLayerSize + 2)); } if (helper != null) { Pair ret = helper.backpropGradient(conf, gateActivationFn, input, recurrentWeights, inputWeights, epsilon, truncatedBPTT, tbpttBackwardLength, fwdPass, forwards, inputWeightKey, recurrentWeightKey, biasWeightKey, gradientViews, maskArray, hasPeepholeConnections); if (ret != null) { return ret; } } boolean sigmoidGates = gateActivationFn instanceof ActivationSigmoid; IActivation afn = ((org.deeplearning4j.nn.conf.layers.BaseLayer) conf.getLayer()).getActivationFn(); // we check, if we have defined workspace here. If we don't - we working without workspace, and we're skipping internal LSTM one. Otherwise - we go for it MemoryWorkspace workspace = Nd4j.getMemoryManager().getCurrentWorkspace() != null && !Nd4j.getMemoryManager() .getCurrentWorkspace().getId().equals(ComputationGraph.workspaceExternal) ? Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread( ComputationGraph.workspaceConfigurationLSTM, ComputationGraph.workspaceLSTM) : null; INDArray timeStepMaskColumn = null; for (int iTimeIndex = timeSeriesLength - 1; iTimeIndex >= endIdx; iTimeIndex--) { // we're emulating try block here if (workspace != null) workspace.notifyScopeEntered(); int time = iTimeIndex; int inext = 1; if (!forwards) { time = timeSeriesLength - iTimeIndex - 1; inext = -1; } //First: calclate the components of nablaCellState that relies on the next time step deltas, so we can overwrite the deltas INDArray nablaCellState; if (iTimeIndex != timeSeriesLength - 1 && hasPeepholeConnections) { nablaCellState = deltafNext.dup('f').muliRowVector(wFFTranspose); l1BLAS.axpy(nablaCellState.length(), 1.0, deltagNext.dup('f').muliRowVector(wGGTranspose), nablaCellState); } else { nablaCellState = Nd4j.create(new int[] {miniBatchSize, hiddenLayerSize}, 'f'); } INDArray prevMemCellState = (iTimeIndex == 0 ? fwdPass.prevMemCell : fwdPass.memCellState[time - inext]); INDArray prevHiddenUnitActivation = (iTimeIndex == 0 ? fwdPass.prevAct : fwdPass.fwdPassOutputAsArrays[time - inext]); INDArray currMemCellState = fwdPass.memCellState[time]; //LSTM unit output errors (dL/d(a_out)); not to be confused with \delta=dL/d(z_out) INDArray epsilonSlice = (is2dInput ? epsilon : epsilon.tensorAlongDimension(time, 1, 0)); //(w^{L+1}*(delta^{(L+1)t})^T)^T or equiv. INDArray nablaOut = Shape.toOffsetZeroCopy(epsilonSlice, 'f'); //Shape: [m,n^L] if (iTimeIndex != timeSeriesLength - 1) { //if t == timeSeriesLength-1 then deltaiNext etc are zeros Nd4j.gemm(deltaifogNext, wIFOG, nablaOut, false, true, 1.0, 1.0); } //Output gate deltas: INDArray sigmahOfS = fwdPass.memCellActivations[time]; INDArray ao = fwdPass.oa[time]; //Normally would use zo.dup() in above line, but won't be using zo again (for this time step). Ditto for zf, zg, zi INDArray deltao = deltaoNext; Nd4j.getExecutioner().exec(new MulOp(nablaOut, sigmahOfS, deltao)); if (sigmoidGates) { INDArray sigmaoPrimeOfZo = Nd4j.getExecutioner().execAndReturn(new TimesOneMinus(ao.dup('f'))); //Equivalent to sigmoid deriv on zo deltao.muli(sigmaoPrimeOfZo); } else { deltao.assign(gateActivationFn.backprop(fwdPass.oz[time], deltao).getFirst()); //Deltao needs to be modified in-place //TODO: optimize (no assign) } //Memory cell error: INDArray temp = afn.backprop(currMemCellState.dup('f'), ao.muli(nablaOut)).getFirst(); //TODO activation functions with params l1BLAS.axpy(nablaCellState.length(), 1.0, temp, nablaCellState); if (hasPeepholeConnections) { INDArray deltaMulRowWOO = deltao.dup('f').muliRowVector(wOOTranspose); l1BLAS.axpy(nablaCellState.length(), 1.0, deltaMulRowWOO, nablaCellState); //nablaCellState.addi(deltao.mulRowVector(wOOTranspose)); } if (iTimeIndex != timeSeriesLength - 1) { INDArray nextForgetGateAs = fwdPass.fa[time + inext]; int length = nablaCellState.length(); l1BLAS.axpy(length, 1.0, nextForgetGateAs.muli(nablaCellStateNext), nablaCellState); //nablaCellState.addi(nextForgetGateAs.mul(nablaCellStateNext)) } //Store for use in next iteration, and IF we're in workspace, we need to push it out of current workspace nablaCellStateNext = workspace == null ? nablaCellState : nablaCellState.leverage(); //Forget gate delta: INDArray af = fwdPass.fa[time]; INDArray deltaf = null; if (iTimeIndex > 0 || prevMemCellState != null) { //For time == 0 && no prevMemCellState, equivalent to muli by 0 //Note that prevMemCellState may be non-null at t=0 for TBPTT deltaf = deltafNext; if (sigmoidGates) { Nd4j.getExecutioner().exec(new TimesOneMinus(af, deltaf)); deltaf.muli(nablaCellState); deltaf.muli(prevMemCellState); } else { INDArray temp2 = nablaCellState.mul(prevMemCellState); deltaf.assign(gateActivationFn.backprop(fwdPass.fz[time].dup('f'), temp2).getFirst()); //deltaf needs to be modified in-place //TODO activation functions with params } } //Shape: [m,n^L] //Input modulation gate delta: INDArray ag = fwdPass.ga[time]; INDArray ai = fwdPass.ia[time]; INDArray deltag = deltagNext; if (sigmoidGates) { Nd4j.getExecutioner().exec(new TimesOneMinus(ag, deltag)); //Equivalent to sigmoid deriv on zg deltag.muli(ai); deltag.muli(nablaCellState); } else { INDArray temp2 = Nd4j.getExecutioner().execAndReturn( new MulOp(ai, nablaCellState, Nd4j.createUninitialized(ai.shape(), 'f'))); deltag.assign(gateActivationFn.backprop(fwdPass.gz[time], temp2).getFirst()); //TODO activation functions with params; optimize (no assign) } //Shape: [m,n^L] //Network input delta: INDArray zi = fwdPass.iz[time]; INDArray deltai = deltaiNext; temp = Nd4j.getExecutioner().execAndReturn( new MulOp(ag, nablaCellState, Nd4j.createUninitialized(deltai.shape(), 'f'))); deltai.assign(afn.backprop(zi, temp).getFirst()); //TODO activation functions with params; also: optimize this (no assign) //Shape: [m,n^L] //Handle masking if (maskArray != null) { //Mask array is present: bidirectional RNN -> need to zero out these errors to avoid using errors from a masked time step // to calculate the parameter gradients. Mask array has shape [minibatch, timeSeriesLength] -> get column(this time step) timeStepMaskColumn = maskArray.getColumn(time); deltaifogNext.muliColumnVector(timeStepMaskColumn); //Later, the deltaifogNext is used to calculate: input weight gradients, recurrent weight gradients, bias gradients } INDArray prevLayerActivationSlice = Shape.toMmulCompatible(is2dInput ? input : input.tensorAlongDimension(time, 1, 0)); if (iTimeIndex > 0 || prevHiddenUnitActivation != null) { //For time == 0 && no prevMemCellState, equivalent to muli by 0 //Note that prevHiddenUnitActivations may be non-null at t=0 for TBPTT //Again, deltaifog_current == deltaifogNext at this point... same array Nd4j.gemm(prevLayerActivationSlice, deltaifogNext, iwGradientsOut, true, false, 1.0, 1.0); } else { INDArray iwGradients_i = iwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.interval(0, hiddenLayerSize)); Nd4j.gemm(prevLayerActivationSlice, deltai, iwGradients_i, true, false, 1.0, 1.0); INDArray iwGradients_og = iwGradientsOut.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)); INDArray deltaog = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)); Nd4j.gemm(prevLayerActivationSlice, deltaog, iwGradients_og, true, false, 1.0, 1.0); } if (iTimeIndex > 0 || prevHiddenUnitActivation != null) { //If t==0 and prevHiddenUnitActivation==null, equiv. to zeros(n^L,n^L), so dL/dW for recurrent weights // will end up as 0 anyway //At this point: deltaifog and deltaifogNext are the same thing... //So what we are actually doing here is sum of (prevAct^transpose * deltaifog_current) Nd4j.gemm(prevHiddenUnitActivation, deltaifogNext, rwGradientsIFOG, true, false, 1.0, 1.0); //Shape: [1,n^L]. sum(0) is sum over examples in mini-batch. //Can use axpy here because result of sum and rwGradients[4 to 6] have order Nd4j.order(), via Nd4j.create() if (hasPeepholeConnections) { INDArray dLdwFF = deltaf.dup('f').muli(prevMemCellState).sum(0); //mul not mmul because these weights are from unit j->j only (whereas other recurrent weights are i->j for all i,j) l1BLAS.axpy(hiddenLayerSize, 1.0, dLdwFF, rwGradientsFF); //rwGradients[4].addi(dLdwFF); //dL/dw_{FF} INDArray dLdwGG = deltag.dup('f').muli(prevMemCellState).sum(0); l1BLAS.axpy(hiddenLayerSize, 1.0, dLdwGG, rwGradientsGG); //rwGradients[6].addi(dLdwGG); } } if (hasPeepholeConnections) { INDArray dLdwOO = deltao.dup('f').muli(currMemCellState).sum(0); //Expected shape: [n^L,1]. sum(0) is sum over examples in mini-batch. l1BLAS.axpy(hiddenLayerSize, 1.0, dLdwOO, rwGradientsOO); //rwGradients[5].addi(dLdwOO); //dL/dw_{OOxy} } if (iTimeIndex > 0 || prevHiddenUnitActivation != null) { //For time == 0 && no prevMemCellState, equivalent to muli by 0 //Note that prevHiddenUnitActivation may be non-null at t=0 for TBPTT l1BLAS.axpy(4 * hiddenLayerSize, 1.0, deltaifogNext.sum(0), bGradientsOut); } else { l1BLAS.axpy(hiddenLayerSize, 1.0, deltai.sum(0), bGradientsOut); //Sneaky way to do bGradients_i += deltai.sum(0) INDArray ogBiasToAdd = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)).sum(0); INDArray ogBiasGrad = bGradientsOut.get(NDArrayIndex.point(0), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)); l1BLAS.axpy(2 * hiddenLayerSize, 1.0, ogBiasToAdd, ogBiasGrad); } //Calculate epsilonNext - i.e., equiv. to what would be (w^L*(d^(Lt))^T)^T in a normal network //But here, need to add 4 weights * deltas for the IFOG gates INDArray epsilonNextSlice = epsilonNext.tensorAlongDimension(time, 1, 0); //This slice: f order and contiguous, due to epsilonNext being defined as f order. if (iTimeIndex > 0 || prevHiddenUnitActivation != null) { //Note that prevHiddenUnitActivation may be non-null at t=0 for TBPTT Nd4j.gemm(deltaifogNext, inputWeights, epsilonNextSlice, false, true, 1.0, 1.0); } else { //No contribution from forget gate at t=0 INDArray wi = inputWeights.get(NDArrayIndex.all(), NDArrayIndex.interval(0, hiddenLayerSize)); Nd4j.gemm(deltai, wi, epsilonNextSlice, false, true, 1.0, 1.0); INDArray deltaog = deltaifogNext.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)); INDArray wog = inputWeights.get(NDArrayIndex.all(), NDArrayIndex.interval(2 * hiddenLayerSize, 4 * hiddenLayerSize)); Nd4j.gemm(deltaog, wog, epsilonNextSlice, false, true, 1.0, 1.0); //epsilonNextSlice.addi(deltao.mmul(woTranspose)).addi(deltag.mmul(wgTranspose)); } if (maskArray != null) { //Mask array is present: bidirectional RNN -> need to zero out these errors to avoid sending anything // but 0s to the layer below at this time step (for the given example) epsilonNextSlice.muliColumnVector(timeStepMaskColumn); } if (workspace != null) workspace.close(); } Gradient retGradient = new DefaultGradient(); retGradient.gradientForVariable().put(inputWeightKey, iwGradientsOut); retGradient.gradientForVariable().put(recurrentWeightKey, rwGradientsOut); retGradient.gradientForVariable().put(biasWeightKey, bGradientsOut); return new Pair<>(retGradient, epsilonNext); } public static LayerMemoryReport getMemoryReport(AbstractLSTM lstmLayer, InputType inputType) { boolean isGraves = lstmLayer instanceof org.deeplearning4j.nn.conf.layers.GravesLSTM; return getMemoryReport(isGraves, lstmLayer, inputType); } public static LayerMemoryReport getMemoryReport(GravesBidirectionalLSTM lstmLayer, InputType inputType) { LayerMemoryReport r = getMemoryReport(true, lstmLayer, inputType); //Double everything for bidirectional Map fixedTrain = new HashMap<>(); Map varTrain = new HashMap<>(); Map cacheFixed = new HashMap<>(); Map cacheVar = new HashMap<>(); for (CacheMode cm : CacheMode.values()) { fixedTrain.put(cm, 2 * r.getWorkingMemoryFixedTrain().get(cm)); varTrain.put(cm, 2 * r.getWorkingMemoryVariableTrain().get(cm)); cacheFixed.put(cm, 2 * r.getCacheModeMemFixed().get(cm)); cacheVar.put(cm, 2 * r.getCacheModeMemVariablePerEx().get(cm)); } return new LayerMemoryReport.Builder(r.getLayerName(), r.getClass(), r.getInputType(), r.getOutputType()) .standardMemory(2 * r.getParameterSize(), 2 * r.getUpdaterStateSize()) .workingMemory(2 * r.getWorkingMemoryFixedInference(), 2 * r.getWorkingMemoryVariableInference(), fixedTrain, varTrain) .cacheMemory(cacheFixed, cacheVar).build(); } public static LayerMemoryReport getMemoryReport(boolean isGraves, org.deeplearning4j.nn.conf.layers.FeedForwardLayer lstmLayer, InputType inputType) { InputType.InputTypeRecurrent itr = (InputType.InputTypeRecurrent) inputType; int tsLength = itr.getTimeSeriesLength(); InputType outputType = lstmLayer.getOutputType(-1, inputType); int numParams = lstmLayer.initializer().numParams(lstmLayer); int updaterSize = (int) lstmLayer.getIUpdater().stateSize(numParams); //Memory use during forward pass: //ifogActivations: nTimeSteps * [minibatch,4*layerSize] (not cached during inference fwd pass) int workingMemInferencePerEx = tsLength * 4 * lstmLayer.getNOut(); //Reduced by factor of tsLength if using workspace //For training, we also have //nTimeSteps * 5 * [minibatch, nOut] - 4 x gate pre-outs, memory cell state - may be cached //nTimeSteps * [minibatch, nOut] - peephole conneciton activations, graves LSTM only - may be cached //Total: 4 + 5 + 1 = 10xnOut per time step (training) or 4x (inference) int fwdPassPerTimeStepTrainCache = tsLength * 6 * lstmLayer.getNOut(); //During backprop: //2 dups of size [minibatch, nOut] for nablaCellState (1 alloc only for no peephole) //1 [minibatch, nOut] for deltao //2 for memory cell error //1 allocation for input modulation gate //1 for layer input //3 dups [minibatch, nOut] for peephole (Graves only) // 5xnOut (independent of minibatch size) - deltaiFog, peephole etc. Only 2 if no peephole TODO //6 for non-graves, 9 for graves int backpropWorkingSpace = (isGraves ? 9 : 6) * tsLength * lstmLayer.getNOut(); //TODO NO WAY TO TAKE LSTM WORKSPACE INTO ACCOUNT HERE :( Map trainVariable = new HashMap<>(); Map cacheVariable = new HashMap<>(); for (CacheMode cm : CacheMode.values()) { long trainWorking; long cacheMem; if (cm == CacheMode.NONE) { trainWorking = workingMemInferencePerEx + fwdPassPerTimeStepTrainCache + backpropWorkingSpace; cacheMem = 0; } else { trainWorking = workingMemInferencePerEx + backpropWorkingSpace; cacheMem = fwdPassPerTimeStepTrainCache; } trainVariable.put(cm, trainWorking); cacheVariable.put(cm, cacheMem); } return new LayerMemoryReport.Builder(null, lstmLayer.getClass(), inputType, outputType) .standardMemory(numParams, updaterSize) .workingMemory(0, workingMemInferencePerEx, MemoryReport.CACHE_MODE_ALL_ZEROS, trainVariable) .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, cacheVariable).build(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy