org.deeplearning4j.nn.params.PretrainParamInitializer Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.params;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.Map;
/**
* Pretrain weight initializer.
* Has the visible bias as well as hidden and weight matrix.
*
* @author Adam Gibson
*/
public class PretrainParamInitializer extends DefaultParamInitializer {
private static final PretrainParamInitializer INSTANCE = new PretrainParamInitializer();
public static PretrainParamInitializer getInstance() {
return INSTANCE;
}
public final static String VISIBLE_BIAS_KEY = "v" + DefaultParamInitializer.BIAS_KEY;
@Override
public int numParams(NeuralNetConfiguration conf) {
org.deeplearning4j.nn.conf.layers.BasePretrainNetwork layerConf =
(org.deeplearning4j.nn.conf.layers.BasePretrainNetwork) conf.getLayer();
return super.numParams(conf) + layerConf.getNIn();
}
@Override
public Map init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
Map params = super.init(conf, paramsView, initializeParams);
org.deeplearning4j.nn.conf.layers.BasePretrainNetwork layerConf =
(org.deeplearning4j.nn.conf.layers.BasePretrainNetwork) conf.getLayer();
int nIn = layerConf.getNIn();
int nOut = layerConf.getNOut();
int nWeightParams = nIn * nOut;
INDArray visibleBiasView = paramsView.get(NDArrayIndex.point(0),
NDArrayIndex.interval(nWeightParams + nOut, nWeightParams + nOut + nIn));
params.put(VISIBLE_BIAS_KEY, createVisibleBias(conf, visibleBiasView, initializeParams));
conf.addVariable(VISIBLE_BIAS_KEY);
return params;
}
protected INDArray createVisibleBias(NeuralNetConfiguration conf, INDArray visibleBiasView,
boolean initializeParameters) {
org.deeplearning4j.nn.conf.layers.BasePretrainNetwork layerConf =
(org.deeplearning4j.nn.conf.layers.BasePretrainNetwork) conf.getLayer();
if (initializeParameters) {
INDArray ret = Nd4j.valueArrayOf(layerConf.getNIn(), layerConf.getVisibleBiasInit());
visibleBiasView.assign(ret);
}
return visibleBiasView;
}
@Override
public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
Map out = super.getGradientsFromFlattened(conf, gradientView);
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
int nIn = layerConf.getNIn();
int nOut = layerConf.getNOut();
int nWeightParams = nIn * nOut;
INDArray vBiasView = gradientView.get(NDArrayIndex.point(0),
NDArrayIndex.interval(nWeightParams + nOut, nWeightParams + nOut + nIn));
out.put(VISIBLE_BIAS_KEY, vBiasView);
return out;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy