org.deeplearning4j.util.TimeSeriesUtils Maven / Gradle / Ivy
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.util;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.Arrays;
/**
* Basic time series utils
* @author Adam Gibson
*/
public class TimeSeriesUtils {
private TimeSeriesUtils() {}
/**
* Calculate a moving average given the length
* @param toAvg the array to average
* @param n the length of the moving window
* @return the moving averages for each row
*/
public static INDArray movingAverage(INDArray toAvg, int n) {
INDArray ret = Nd4j.cumsum(toAvg);
INDArrayIndex[] ends = new INDArrayIndex[] {NDArrayIndex.interval(n, toAvg.columns())};
INDArrayIndex[] begins = new INDArrayIndex[] {NDArrayIndex.interval(0, toAvg.columns() - n, false)};
INDArrayIndex[] nMinusOne = new INDArrayIndex[] {NDArrayIndex.interval(n - 1, toAvg.columns())};
ret.put(ends, ret.get(ends).sub(ret.get(begins)));
return ret.get(nMinusOne).divi(n);
}
/**
* Reshape time series mask arrays. This should match the assumptions (f order, etc) in RnnOutputLayer
* @param timeSeriesMask Mask array to reshape to a column vector
* @return Mask array as a column vector
*/
public static INDArray reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask) {
if (timeSeriesMask.rank() != 2)
throw new IllegalArgumentException("Cannot reshape mask: rank is not 2");
if (timeSeriesMask.ordering() != 'f')
timeSeriesMask = timeSeriesMask.dup('f');
return timeSeriesMask.reshape('f', new int[] {timeSeriesMask.length(), 1});
}
/**
* Reshape time series mask arrays. This should match the assumptions (f order, etc) in RnnOutputLayer
* @param timeSeriesMaskAsVector Mask array to reshape to a column vector
* @return Mask array as a column vector
*/
public static INDArray reshapeVectorToTimeSeriesMask(INDArray timeSeriesMaskAsVector, int minibatchSize) {
if (!timeSeriesMaskAsVector.isVector())
throw new IllegalArgumentException("Cannot reshape mask: expected vector");
int timeSeriesLength = timeSeriesMaskAsVector.length() / minibatchSize;
return timeSeriesMaskAsVector.reshape('f', new int[] {minibatchSize, timeSeriesLength});
}
public static INDArray reshapePerOutputTimeSeriesMaskTo2d(INDArray perOutputTimeSeriesMask) {
if (perOutputTimeSeriesMask.rank() != 3) {
throw new IllegalArgumentException(
"Cannot reshape per output mask: rank is not 3 (is: " + perOutputTimeSeriesMask.rank()
+ ", shape = " + Arrays.toString(perOutputTimeSeriesMask.shape()) + ")");
}
return reshape3dTo2d(perOutputTimeSeriesMask);
}
public static INDArray reshape3dTo2d(INDArray in) {
if (in.rank() != 3)
throw new IllegalArgumentException("Invalid input: expect NDArray with rank 3");
int[] shape = in.shape();
if (shape[0] == 1)
return in.tensorAlongDimension(0, 1, 2).permutei(1, 0); //Edge case: miniBatchSize==1
if (shape[2] == 1)
return in.tensorAlongDimension(0, 1, 0); //Edge case: timeSeriesLength=1
INDArray permuted = in.permute(0, 2, 1); //Permute, so we get correct order after reshaping
return permuted.reshape('f', shape[0] * shape[2], shape[1]);
}
public static INDArray reshape2dTo3d(INDArray in, int miniBatchSize) {
if (in.rank() != 2)
throw new IllegalArgumentException("Invalid input: expect NDArray with rank 2");
//Based on: RnnToFeedForwardPreProcessor
int[] shape = in.shape();
if (in.ordering() != 'f')
in = Shape.toOffsetZeroCopy(in, 'f');
INDArray reshaped = in.reshape('f', miniBatchSize, shape[0] / miniBatchSize, shape[1]);
return reshaped.permute(0, 2, 1);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy