org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.earlystopping.trainer;
import org.deeplearning4j.datasets.iterator.utilty.SingletonDataSetIterator;
import org.deeplearning4j.datasets.iterator.utilty.SingletonMultiDataSetIterator;
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.earlystopping.listener.EarlyStoppingListener;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;
public class EarlyStoppingGraphTrainer extends BaseEarlyStoppingTrainer { //implements IEarlyStoppingTrainer {
private ComputationGraph net;
/**
* @param esConfig Configuration
* @param net Network to train using early stopping
* @param train DataSetIterator for training the network
*/
public EarlyStoppingGraphTrainer(EarlyStoppingConfiguration esConfig, ComputationGraph net,
DataSetIterator train) {
this(esConfig, net, train, null);
}
/**Constructor for training using a {@link DataSetIterator}
* @param esConfig Configuration
* @param net Network to train using early stopping
* @param train DataSetIterator for training the network
* @param listener Early stopping listener. May be null.
*/
public EarlyStoppingGraphTrainer(EarlyStoppingConfiguration esConfig, ComputationGraph net,
DataSetIterator train, EarlyStoppingListener listener) {
super(esConfig, net, train, null, listener);
if (net.getNumInputArrays() != 1 || net.getNumOutputArrays() != 1)
throw new IllegalStateException(
"Cannot do early stopping training on ComputationGraph with DataSetIterator: graph does not have 1 input and 1 output array");
this.net = net;
}
/**Constructor for training using a {@link MultiDataSetIterator}
* @param esConfig Configuration
* @param net Network to train using early stopping
* @param train DataSetIterator for training the network
* @param listener Early stopping listener. May be null.
*/
public EarlyStoppingGraphTrainer(EarlyStoppingConfiguration esConfig, ComputationGraph net,
MultiDataSetIterator train, EarlyStoppingListener listener) {
super(esConfig, net, null, train, listener);
this.net = net;
}
@Override
protected void fit(DataSet ds) {
net.fit(ds);
}
@Override
protected void fit(MultiDataSet mds) {
net.fit(mds);
}
@Override
protected void pretrain(DataSet ds) {
net.pretrain(new SingletonDataSetIterator(ds));
}
@Override
protected void pretrain(MultiDataSet mds) {
net.pretrain(new SingletonMultiDataSetIterator(mds));
}
}