Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.gradientcheck.GradientCheckUtil Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.gradientcheck;
import lombok.*;
import lombok.experimental.Accessors;
import lombok.extern.slf4j.Slf4j;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.exception.ND4JArraySizeException;
import org.nd4j.common.function.Consumer;
import org.nd4j.linalg.lossfunctions.impl.LossBinaryXENT;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.graph.GraphVertex;
import org.deeplearning4j.nn.conf.graph.LayerVertex;
import org.deeplearning4j.nn.conf.layers.BaseLayer;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.layers.BaseOutputLayer;
import org.deeplearning4j.nn.layers.LossLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.updater.UpdaterCreator;
import org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.buffer.util.DataTypeUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.MultiDataSet;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.NoOp;
import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.impl.LossMCXENT;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import java.util.*;
@Slf4j
public class GradientCheckUtil {
private static final List> VALID_ACTIVATION_FUNCTIONS =
Arrays.asList(Activation.CUBE.getActivationFunction().getClass(),
Activation.ELU.getActivationFunction().getClass(),
Activation.IDENTITY.getActivationFunction().getClass(),
Activation.RATIONALTANH.getActivationFunction().getClass(),
Activation.SIGMOID.getActivationFunction().getClass(),
Activation.SOFTMAX.getActivationFunction().getClass(),
Activation.SOFTPLUS.getActivationFunction().getClass(),
Activation.SOFTSIGN.getActivationFunction().getClass(),
Activation.TANH.getActivationFunction().getClass());
private GradientCheckUtil() {}
private static void configureLossFnClippingIfPresent(IOutputLayer outputLayer){
ILossFunction lfn = null;
IActivation afn = null;
if(outputLayer instanceof BaseOutputLayer){
BaseOutputLayer o = (BaseOutputLayer)outputLayer;
lfn = ((org.deeplearning4j.nn.conf.layers.BaseOutputLayer)o.layerConf()).getLossFn();
afn = o.layerConf().getActivationFn();
} else if(outputLayer instanceof LossLayer){
LossLayer o = (LossLayer) outputLayer;
lfn = o.layerConf().getLossFn();
afn = o.layerConf().getActivationFn();
}
if (lfn instanceof LossMCXENT && afn instanceof ActivationSoftmax && ((LossMCXENT) lfn).getSoftmaxClipEps() != 0) {
log.info("Setting softmax clipping epsilon to 0.0 for " + lfn.getClass()
+ " loss function to avoid spurious gradient check failures");
((LossMCXENT) lfn).setSoftmaxClipEps(0.0);
} else if(lfn instanceof LossBinaryXENT && ((LossBinaryXENT) lfn).getClipEps() != 0) {
log.info("Setting clipping epsilon to 0.0 for " + lfn.getClass()
+ " loss function to avoid spurious gradient check failures");
((LossBinaryXENT) lfn).setClipEps(0.0);
}
}
public enum PrintMode {
ALL,
ZEROS,
FAILURES_ONLY
}
@Accessors(fluent = true)
@Data
@NoArgsConstructor
public static class MLNConfig {
private MultiLayerNetwork net;
private INDArray input;
private INDArray labels;
private INDArray inputMask;
private INDArray labelMask;
private double epsilon = 1e-6;
private double maxRelError = 1e-3;
private double minAbsoluteError = 1e-8;
private PrintMode print = PrintMode.ZEROS;
private boolean exitOnFirstError = false;
private boolean subset;
private int maxPerParam;
private Set excludeParams;
private Consumer callEachIter;
}
@Accessors(fluent = true)
@Data
@NoArgsConstructor
public static class GraphConfig {
private ComputationGraph net;
private INDArray[] inputs;
private INDArray[] labels;
private INDArray[] inputMask;
private INDArray[] labelMask;
private double epsilon = 1e-6;
private double maxRelError = 1e-3;
private double minAbsoluteError = 1e-8;
private PrintMode print = PrintMode.ZEROS;
private boolean exitOnFirstError = false;
private boolean subset;
private int maxPerParam;
private Set excludeParams;
private Consumer callEachIter;
}
/**
* Check backprop gradients for a MultiLayerNetwork.
* @param mln MultiLayerNetwork to test. This must be initialized.
* @param epsilon Usually on the order/ of 1e-4 or so.
* @param maxRelError Maximum relative error. Usually < 1e-5 or so, though maybe more for deep networks or those with nonlinear activation
* @param minAbsoluteError Minimum absolute error to cause a failure. Numerical gradients can be non-zero due to precision issues.
* For example, 0.0 vs. 1e-18: relative error is 1.0, but not really a failure
* @param print Whether to print full pass/failure details for each parameter gradient
* @param exitOnFirstError If true: return upon first failure. If false: continue checking even if
* one parameter gradient has failed. Typically use false for debugging, true for unit tests.
* @param input Input array to use for forward pass. May be mini-batch data.
* @param labels Labels/targets to use to calculate backprop gradient. May be mini-batch data.
* @return true if gradients are passed, false otherwise.
*/
@Deprecated
public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError,
double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels) {
return checkGradients(new MLNConfig().net(mln).epsilon(epsilon).maxRelError(maxRelError).minAbsoluteError(minAbsoluteError).print(PrintMode.FAILURES_ONLY)
.exitOnFirstError(exitOnFirstError).input(input).labels(labels));
}
@Deprecated
public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError,
double minAbsoluteError, boolean print, boolean exitOnFirstError,
INDArray input, INDArray labels, INDArray inputMask, INDArray labelMask,
boolean subset, int maxPerParam, Set excludeParams, final Integer rngSeedResetEachIter) {
Consumer c = null;
if(rngSeedResetEachIter != null){
c = new Consumer() {
@Override
public void accept(MultiLayerNetwork multiLayerNetwork) {
Nd4j.getRandom().setSeed(rngSeedResetEachIter);
}
};
}
return checkGradients(new MLNConfig().net(mln).epsilon(epsilon).maxRelError(maxRelError).minAbsoluteError(minAbsoluteError).print(PrintMode.FAILURES_ONLY)
.exitOnFirstError(exitOnFirstError).input(input).labels(labels).inputMask(inputMask).labelMask(labelMask).subset(subset).maxPerParam(maxPerParam).excludeParams(excludeParams).callEachIter(c));
}
public static boolean checkGradients(MLNConfig c) {
//Basic sanity checks on input:
if (c.epsilon <= 0.0 || c.epsilon > 0.1)
throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so");
if (c.maxRelError <= 0.0 || c.maxRelError > 0.25)
throw new IllegalArgumentException("Invalid maxRelativeError: " + c.maxRelError);
if (!(c.net.getOutputLayer() instanceof IOutputLayer))
throw new IllegalArgumentException("Cannot check backprop gradients without OutputLayer");
DataType dataType = DataTypeUtil.getDtypeFromContext();
if (dataType != DataType.DOUBLE) {
throw new IllegalStateException("Cannot perform gradient check: Datatype is not set to double precision ("
+ "is: " + dataType + "). Double precision must be used for gradient checks. Set "
+ "DataTypeUtil.setDTypeForContext(DataType.DOUBLE); before using GradientCheckUtil");
}
DataType netDataType = c.net.getLayerWiseConfigurations().getDataType();
if (netDataType != DataType.DOUBLE) {
throw new IllegalStateException("Cannot perform gradient check: Network datatype is not set to double precision ("
+ "is: " + netDataType + "). Double precision must be used for gradient checks. Create network with .dataType(DataType.DOUBLE) before using GradientCheckUtil");
}
if(netDataType != c.net.params().dataType()){
throw new IllegalStateException("Parameters datatype does not match network configuration datatype ("
+ "is: " + c.net.params().dataType() + "). If network datatype is set to DOUBLE, parameters must also be DOUBLE.");
}
//Check network configuration:
int layerCount = 0;
for (NeuralNetConfiguration n : c.net.getLayerWiseConfigurations().getConfs()) {
if (n.getLayer() instanceof BaseLayer) {
BaseLayer bl = (BaseLayer) n.getLayer();
IUpdater u = bl.getIUpdater();
if (u instanceof Sgd) {
//Must have LR of 1.0
double lr = ((Sgd) u).getLearningRate();
if (lr != 1.0) {
throw new IllegalStateException("When using SGD updater, must also use lr=1.0 for layer "
+ layerCount + "; got " + u + " with lr=" + lr + " for layer \""
+ n.getLayer().getLayerName() + "\"");
}
} else if (!(u instanceof NoOp)) {
throw new IllegalStateException(
"Must have Updater.NONE (or SGD + lr=1.0) for layer " + layerCount + "; got " + u);
}
IActivation activation = bl.getActivationFn();
if (activation != null) {
if (!VALID_ACTIVATION_FUNCTIONS.contains(activation.getClass())) {
log.warn("Layer " + layerCount + " is possibly using an unsuitable activation function: "
+ activation.getClass()
+ ". Activation functions for gradient checks must be smooth (like sigmoid, tanh, softmax) and not "
+ "contain discontinuities like ReLU or LeakyReLU (these may cause spurious failures)");
}
}
}
if (n.getLayer().getIDropout() != null && c.callEachIter == null) {
throw new IllegalStateException("When gradient checking dropout, need to reset RNG seed each iter, or no" +
" dropout should be present during gradient checks - got dropout = "
+ n.getLayer().getIDropout() + " for layer " + layerCount);
}
}
//Set softmax clipping to 0 if necessary, to avoid spurious failures due to clipping
for(Layer l : c.net.getLayers()){
if(l instanceof IOutputLayer){
configureLossFnClippingIfPresent((IOutputLayer) l);
}
}
c.net.setInput(c.input);
c.net.setLabels(c.labels);
c.net.setLayerMaskArrays(c.inputMask, c.labelMask);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
c.net.computeGradientAndScore();
Pair gradAndScore = c.net.gradientAndScore();
Updater updater = UpdaterCreator.getUpdater(c.net);
updater.update(c.net, gradAndScore.getFirst(), 0, 0, c.net.batchSize(), LayerWorkspaceMgr.noWorkspaces());
INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup(); //need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done)
INDArray originalParams = c.net.params().dup(); //need dup: params are a *view* of full parameters
val nParams = originalParams.length();
Map paramTable = c.net.paramTable();
List paramNames = new ArrayList<>(paramTable.keySet());
val paramEnds = new long[paramNames.size()];
paramEnds[0] = paramTable.get(paramNames.get(0)).length();
Map stepSizeForParam;
if(c.subset){
stepSizeForParam = new HashMap<>();
stepSizeForParam.put(paramNames.get(0), (int) Math.max(1, paramTable.get(paramNames.get(0)).length() / c.maxPerParam));
} else {
stepSizeForParam = null;
}
for (int i = 1; i < paramEnds.length; i++) {
val n = paramTable.get(paramNames.get(i)).length();
paramEnds[i] = paramEnds[i - 1] + n;
if(c.subset){
long ss = n / c.maxPerParam;
if(ss == 0){
ss = n;
}
if (ss > Integer.MAX_VALUE)
throw new ND4JArraySizeException();
stepSizeForParam.put(paramNames.get(i), (int) ss);
}
}
if(c.print == PrintMode.ALL) {
int i=0;
for (Layer l : c.net.getLayers()) {
Set s = l.paramTable().keySet();
log.info("Layer " + i + ": " + l.getClass().getSimpleName() + " - params " + s);
i++;
}
}
int totalNFailures = 0;
double maxError = 0.0;
DataSet ds = new DataSet(c.input, c.labels, c.inputMask, c.labelMask);
int currParamNameIdx = 0;
if(c.excludeParams != null && !c.excludeParams.isEmpty()){
log.info("NOTE: parameters will be skipped due to config: {}", c.excludeParams);
}
INDArray params = c.net.params(); //Assumption here: params is a view that we can modify in-place
for (long i = 0; i < nParams; ) {
//Get param name
if (i >= paramEnds[currParamNameIdx]) {
currParamNameIdx++;
}
String paramName = paramNames.get(currParamNameIdx);
if(c.excludeParams != null && c.excludeParams.contains(paramName)){
// log.info("Skipping parameters for parameter name: {}", paramName);
i = paramEnds[currParamNameIdx++];
continue;
}
//(w+epsilon): Do forward pass and score
double origValue = params.getDouble(i);
params.putScalar(i, origValue + c.epsilon);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
double scorePlus = c.net.score(ds, true);
//(w-epsilon): Do forward pass and score
params.putScalar(i, origValue - c.epsilon);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
double scoreMinus = c.net.score(ds, true);
//Reset original param value
params.putScalar(i, origValue);
//Calculate numerical parameter gradient:
double scoreDelta = scorePlus - scoreMinus;
double numericalGradient = scoreDelta / (2 * c.epsilon);
if (Double.isNaN(numericalGradient))
throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams);
double backpropGradient = gradientToCheck.getDouble(i);
//http://cs231n.github.io/neural-networks-3/#gradcheck
//use mean centered
double relError = Math.abs(backpropGradient - numericalGradient)
/ (Math.abs(numericalGradient) + Math.abs(backpropGradient));
if (backpropGradient == 0.0 && numericalGradient == 0.0)
relError = 0.0; //Edge case: i.e., RNNs with time series length of 1.0
if (relError > maxError)
maxError = relError;
if (relError > c.maxRelError || Double.isNaN(relError)) {
double absError = Math.abs(backpropGradient - numericalGradient);
if (absError < c.minAbsoluteError) {
if(c.print == PrintMode.ALL || c.print == PrintMode.ZEROS && absError == 0.0) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ "; absolute error = " + absError + " < minAbsoluteError = " + c.minAbsoluteError);
}
} else {
log.info("Param " + i + " (" + paramName + ") FAILED: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus + ", paramValue = " + origValue);
if (c.exitOnFirstError)
return false;
totalNFailures++;
}
} else if (c.print == PrintMode.ALL) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= "
+ numericalGradient + ", relError= " + relError);
}
long step;
if(c.subset){
step = stepSizeForParam.get(paramName);
if(i + step > paramEnds[currParamNameIdx]+1){
step = paramEnds[currParamNameIdx]+1 - i;
}
} else {
step = 1;
}
i += step;
}
val nPass = nParams - totalNFailures;
log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, "
+ totalNFailures + " failed. Largest relative error = " + maxError);
return totalNFailures == 0;
}
public static boolean checkGradients(GraphConfig c){
//Basic sanity checks on input:
if (c.epsilon <= 0.0 || c.epsilon > 0.1)
throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so");
if (c.maxRelError <= 0.0 || c.maxRelError > 0.25)
throw new IllegalArgumentException("Invalid maxRelativeError: " + c.maxRelError);
if (c.net.getNumInputArrays() != c.inputs.length)
throw new IllegalArgumentException("Invalid input arrays: expect " + c.net.getNumInputArrays() + " inputs");
if (c.net.getNumOutputArrays() != c.labels.length)
throw new IllegalArgumentException(
"Invalid labels arrays: expect " + c.net.getNumOutputArrays() + " outputs");
DataType dataType = DataTypeUtil.getDtypeFromContext();
if (dataType != DataType.DOUBLE) {
throw new IllegalStateException("Cannot perform gradient check: Datatype is not set to double precision ("
+ "is: " + dataType + "). Double precision must be used for gradient checks. Set "
+ "DataTypeUtil.setDTypeForContext(DataType.DOUBLE); before using GradientCheckUtil");
}
DataType netDataType = c.net.getConfiguration().getDataType();
if (netDataType != DataType.DOUBLE) {
throw new IllegalStateException("Cannot perform gradient check: Network datatype is not set to double precision ("
+ "is: " + netDataType + "). Double precision must be used for gradient checks. Create network with .dataType(DataType.DOUBLE) before using GradientCheckUtil");
}
if(netDataType != c.net.params().dataType()){
throw new IllegalStateException("Parameters datatype does not match network configuration datatype ("
+ "is: " + c.net.params().dataType() + "). If network datatype is set to DOUBLE, parameters must also be DOUBLE.");
}
//Check configuration
int layerCount = 0;
for (String vertexName : c.net.getConfiguration().getVertices().keySet()) {
GraphVertex gv = c.net.getConfiguration().getVertices().get(vertexName);
if (!(gv instanceof LayerVertex))
continue;
LayerVertex lv = (LayerVertex) gv;
if (lv.getLayerConf().getLayer() instanceof BaseLayer) {
BaseLayer bl = (BaseLayer) lv.getLayerConf().getLayer();
IUpdater u = bl.getIUpdater();
if (u instanceof Sgd) {
//Must have LR of 1.0
double lr = ((Sgd) u).getLearningRate();
if (lr != 1.0) {
throw new IllegalStateException("When using SGD updater, must also use lr=1.0 for layer "
+ layerCount + "; got " + u + " with lr=" + lr + " for layer \""
+ lv.getLayerConf().getLayer().getLayerName() + "\"");
}
} else if (!(u instanceof NoOp)) {
throw new IllegalStateException(
"Must have Updater.NONE (or SGD + lr=1.0) for layer " + layerCount + "; got " + u);
}
IActivation activation = bl.getActivationFn();
if (activation != null) {
if (!VALID_ACTIVATION_FUNCTIONS.contains(activation.getClass())) {
log.warn("Layer \"" + vertexName + "\" is possibly using an unsuitable activation function: "
+ activation.getClass()
+ ". Activation functions for gradient checks must be smooth (like sigmoid, tanh, softmax) and not "
+ "contain discontinuities like ReLU or LeakyReLU (these may cause spurious failures)");
}
}
}
if (lv.getLayerConf().getLayer().getIDropout() != null && c.callEachIter == null) {
throw new IllegalStateException("When gradient checking dropout, rng seed must be reset each iteration, or no" +
" dropout should be present during gradient checks - got dropout = "
+ lv.getLayerConf().getLayer().getIDropout() + " for layer " + layerCount);
}
}
//Set softmax clipping to 0 if necessary, to avoid spurious failures due to clipping
for(Layer l : c.net.getLayers()){
if(l instanceof IOutputLayer){
configureLossFnClippingIfPresent((IOutputLayer) l);
}
}
for (int i = 0; i < c.inputs.length; i++)
c.net.setInput(i, c.inputs[i]);
for (int i = 0; i < c.labels.length; i++)
c.net.setLabel(i, c.labels[i]);
c.net.setLayerMaskArrays(c.inputMask, c.labelMask);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
c.net.computeGradientAndScore();
Pair gradAndScore = c.net.gradientAndScore();
ComputationGraphUpdater updater = new ComputationGraphUpdater(c.net);
updater.update(gradAndScore.getFirst(), 0, 0, c.net.batchSize(), LayerWorkspaceMgr.noWorkspaces());
INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup(); //need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done)
INDArray originalParams = c.net.params().dup(); //need dup: params are a *view* of full parameters
val nParams = originalParams.length();
Map paramTable = c.net.paramTable();
List paramNames = new ArrayList<>(paramTable.keySet());
val paramEnds = new long[paramNames.size()];
paramEnds[0] = paramTable.get(paramNames.get(0)).length();
for (int i = 1; i < paramEnds.length; i++) {
paramEnds[i] = paramEnds[i - 1] + paramTable.get(paramNames.get(i)).length();
}
if(c.excludeParams != null && !c.excludeParams.isEmpty()){
log.info("NOTE: parameters will be skipped due to config: {}", c.excludeParams);
}
int currParamNameIdx = 0;
int totalNFailures = 0;
double maxError = 0.0;
MultiDataSet mds = new MultiDataSet(c.inputs, c.labels, c.inputMask, c.labelMask);
INDArray params = c.net.params(); //Assumption here: params is a view that we can modify in-place
for (long i = 0; i < nParams; i++) {
//Get param name
if (i >= paramEnds[currParamNameIdx]) {
currParamNameIdx++;
}
String paramName = paramNames.get(currParamNameIdx);
if(c.excludeParams != null && c.excludeParams.contains(paramName)){
//log.info("Skipping parameters for parameter name: {}", paramName);
i = paramEnds[currParamNameIdx++];
continue;
}
//(w+epsilon): Do forward pass and score
double origValue = params.getDouble(i);
params.putScalar(i, origValue + c.epsilon);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
double scorePlus = c.net.score(mds, true); //training == true for batch norm, etc (scores and gradients need to be calculated on same thing)
//(w-epsilon): Do forward pass and score
params.putScalar(i, origValue - c.epsilon);
if(c.callEachIter != null){
c.callEachIter.accept(c.net);
}
double scoreMinus = c.net.score(mds, true);
//Reset original param value
params.putScalar(i, origValue);
//Calculate numerical parameter gradient:
double scoreDelta = scorePlus - scoreMinus;
double numericalGradient = scoreDelta / (2 * c.epsilon);
if (Double.isNaN(numericalGradient))
throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams);
double backpropGradient = gradientToCheck.getDouble(i);
//http://cs231n.github.io/neural-networks-3/#gradcheck
//use mean centered
double relError = Math.abs(backpropGradient - numericalGradient)
/ (Math.abs(numericalGradient) + Math.abs(backpropGradient));
if (backpropGradient == 0.0 && numericalGradient == 0.0)
relError = 0.0; //Edge case: i.e., RNNs with time series length of 1.0
if (relError > maxError)
maxError = relError;
if (relError > c.maxRelError || Double.isNaN(relError)) {
double absError = Math.abs(backpropGradient - numericalGradient);
if (absError < c.minAbsoluteError) {
if(c.print == PrintMode.ALL || c.print == PrintMode.ZEROS && absError == 0.0) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ "; absolute error = " + absError + " < minAbsoluteError = " + c.minAbsoluteError);
}
} else {
log.info("Param " + i + " (" + paramName + ") FAILED: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus + ", paramValue = " + origValue);
if (c.exitOnFirstError)
return false;
totalNFailures++;
}
} else if (c.print == PrintMode.ALL) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= "
+ numericalGradient + ", relError= " + relError);
}
}
val nPass = nParams - totalNFailures;
log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, "
+ totalNFailures + " failed. Largest relative error = " + maxError);
return totalNFailures == 0;
}
/**
* Check backprop gradients for a pretrain layer
*
* NOTE: gradient checking pretrain layers can be difficult...
*/
public static boolean checkGradientsPretrainLayer(Layer layer, double epsilon, double maxRelError,
double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, int rngSeed) {
LayerWorkspaceMgr mgr = LayerWorkspaceMgr.noWorkspaces();
//Basic sanity checks on input:
if (epsilon <= 0.0 || epsilon > 0.1)
throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so");
if (maxRelError <= 0.0 || maxRelError > 0.25)
throw new IllegalArgumentException("Invalid maxRelativeError: " + maxRelError);
DataType dataType = DataTypeUtil.getDtypeFromContext();
if (dataType != DataType.DOUBLE) {
throw new IllegalStateException("Cannot perform gradient check: Datatype is not set to double precision ("
+ "is: " + dataType + "). Double precision must be used for gradient checks. Set "
+ "DataTypeUtil.setDTypeForContext(DataType.DOUBLE); before using GradientCheckUtil");
}
//Check network configuration:
layer.setInput(input, LayerWorkspaceMgr.noWorkspaces());
Nd4j.getRandom().setSeed(rngSeed);
layer.computeGradientAndScore(mgr);
Pair gradAndScore = layer.gradientAndScore();
Updater updater = UpdaterCreator.getUpdater(layer);
updater.update(layer, gradAndScore.getFirst(), 0, 0, layer.batchSize(), LayerWorkspaceMgr.noWorkspaces());
INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup(); //need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done)
INDArray originalParams = layer.params().dup(); //need dup: params are a *view* of full parameters
val nParams = originalParams.length();
Map paramTable = layer.paramTable();
List paramNames = new ArrayList<>(paramTable.keySet());
val paramEnds = new long[paramNames.size()];
paramEnds[0] = paramTable.get(paramNames.get(0)).length();
for (int i = 1; i < paramEnds.length; i++) {
paramEnds[i] = paramEnds[i - 1] + paramTable.get(paramNames.get(i)).length();
}
int totalNFailures = 0;
double maxError = 0.0;
int currParamNameIdx = 0;
INDArray params = layer.params(); //Assumption here: params is a view that we can modify in-place
for (int i = 0; i < nParams; i++) {
//Get param name
if (i >= paramEnds[currParamNameIdx]) {
currParamNameIdx++;
}
String paramName = paramNames.get(currParamNameIdx);
//(w+epsilon): Do forward pass and score
double origValue = params.getDouble(i);
params.putScalar(i, origValue + epsilon);
//TODO add a 'score' method that doesn't calculate gradients...
Nd4j.getRandom().setSeed(rngSeed);
layer.computeGradientAndScore(mgr);
double scorePlus = layer.score();
//(w-epsilon): Do forward pass and score
params.putScalar(i, origValue - epsilon);
Nd4j.getRandom().setSeed(rngSeed);
layer.computeGradientAndScore(mgr);
double scoreMinus = layer.score();
//Reset original param value
params.putScalar(i, origValue);
//Calculate numerical parameter gradient:
double scoreDelta = scorePlus - scoreMinus;
double numericalGradient = scoreDelta / (2 * epsilon);
if (Double.isNaN(numericalGradient))
throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams);
double backpropGradient = gradientToCheck.getDouble(i);
//http://cs231n.github.io/neural-networks-3/#gradcheck
//use mean centered
double relError = Math.abs(backpropGradient - numericalGradient)
/ (Math.abs(numericalGradient) + Math.abs(backpropGradient));
if (backpropGradient == 0.0 && numericalGradient == 0.0)
relError = 0.0; //Edge case: i.e., RNNs with time series length of 1.0
if (relError > maxError)
maxError = relError;
if (relError > maxRelError || Double.isNaN(relError)) {
double absError = Math.abs(backpropGradient - numericalGradient);
if (absError < minAbsoluteError) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ "; absolute error = " + absError + " < minAbsoluteError = " + minAbsoluteError);
} else {
if (print)
log.info("Param " + i + " (" + paramName + ") FAILED: grad= " + backpropGradient
+ ", numericalGrad= " + numericalGradient + ", relError= " + relError
+ ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus + ", paramValue = " + origValue);
if (exitOnFirstError)
return false;
totalNFailures++;
}
} else if (print) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= "
+ numericalGradient + ", relError= " + relError);
}
}
if (print) {
val nPass = nParams - totalNFailures;
log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, "
+ totalNFailures + " failed. Largest relative error = " + maxError);
}
return totalNFailures == 0;
}
}