org.deeplearning4j.nn.conf.InputPreProcessor Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.Serializable;
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface InputPreProcessor extends Serializable, Cloneable {
/**
* Pre preProcess input/activations for a multi layer network
* @param input the input to pre preProcess
* @param miniBatchSize Minibatch size
* @param workspaceMgr Workspace manager
* @return the processed input. Note that the returned array should be placed in the
* {@link org.deeplearning4j.nn.workspace.ArrayType#ACTIVATIONS} workspace via the workspace manager
*/
INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr);
/**Reverse the preProcess during backprop. Process Gradient/epsilons before
* passing them to the layer below.
* @param output which is a pair of the gradient and epsilon
* @param miniBatchSize Minibatch size
* @param workspaceMgr Workspace manager
* @return the reverse of the pre preProcess step (if any). Note that the returned array should be
* placed in {@link org.deeplearning4j.nn.workspace.ArrayType#ACTIVATION_GRAD} workspace via the
* workspace manager
*/
INDArray backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr);
InputPreProcessor clone();
/**
* For a given type of input to this preprocessor, what is the type of the output?
*
* @param inputType Type of input for the preprocessor
* @return Type of input after applying the preprocessor
*/
InputType getOutputType(InputType inputType);
Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize);
}