Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.constraint;
import lombok.Data;
import lombok.EqualsAndHashCode;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Broadcast;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.BooleanIndexing;
import org.nd4j.linalg.indexing.conditions.Conditions;
import java.util.Collections;
import java.util.Set;
@Data
@EqualsAndHashCode(callSuper = true)
public class MinMaxNormConstraint extends BaseConstraint {
public static final double DEFAULT_RATE = 1.0;
private double min;
private double max;
private double rate;
private MinMaxNormConstraint(){
//No arg for json ser/de
}
/**
* Apply to weights but not biases by default
*
* @param max Maximum L2 value
* @param min Minimum L2 value
* @param dimensions Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should
* be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of
* parameters which have order [depthOut, depthIn, kH, kW]
*/
public MinMaxNormConstraint(double min, double max, int... dimensions){
this(min, max, DEFAULT_RATE, null, dimensions);
}
/**
* Apply to weights but not biases by default
*
* @param max Maximum L2 value
* @param min Minimum L2 value
* @param rate Constraint rate
* @param dimensions Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should
* be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of
* parameters which have order [depthOut, depthIn, kH, kW]
*/
public MinMaxNormConstraint(double min, double max, double rate, int... dimensions){
this(min, max, rate, Collections.emptySet(), dimensions);
}
/**
*
* @param max Maximum L2 value
* @param min Minimum L2 value
* @param rate Constraint rate
* @param paramNames Which parameter names to apply constraint to
* @param dimensions Dimensions to apply to. For DenseLayer, OutputLayer, RnnOutputLayer, LSTM, etc: this should
* be dimension 1. For CNNs, this should be dimensions [1,2,3] corresponding to last 3 of
* parameters which have order [depthOut, depthIn, kH, kW]
*/
public MinMaxNormConstraint(double min, double max, double rate, Set paramNames, int... dimensions){
super(paramNames, dimensions);
if(rate <= 0 || rate > 1.0){
throw new IllegalStateException("Invalid rate: must be in interval (0,1]: got " + rate);
}
this.min = min;
this.max = max;
this.rate = rate;
}
@Override
public void apply(INDArray param) {
INDArray norm = param.norm2(dimensions);
INDArray clipped = norm.unsafeDuplication();
CustomOp op = DynamicCustomOp.builder("clipbyvalue")
.addInputs(clipped)
.callInplace(true)
.addFloatingPointArguments(min, max)
.build();
Nd4j.getExecutioner().exec(op);
norm.addi(epsilon);
clipped.divi(norm);
if(rate != 1.0){
clipped.muli(rate).addi(norm.muli(1.0-rate));
}
Broadcast.mul(param, clipped, param, getBroadcastDims(dimensions, param.rank()) );
}
@Override
public MinMaxNormConstraint clone() {
return new MinMaxNormConstraint(min, max, rate, params, dimensions);
}
}