org.deeplearning4j.nn.conf.dropout.GaussianNoise Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.dropout;
import lombok.Data;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.AddOp;
import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.schedule.ISchedule;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Data
public class GaussianNoise implements IDropout {
private double stddev;
private ISchedule stddevSchedule;
/**
* @param stddev Standard deviation for the mean 0 Gaussian noise
*/
public GaussianNoise(double stddev){
this(stddev, null);
}
/**
* @param stddevSchedule Schedule for standard deviation for the mean 0 Gaussian noise
*/
public GaussianNoise(ISchedule stddevSchedule){
this(Double.NaN, stddevSchedule);
}
protected GaussianNoise(@JsonProperty("stddev") double stddev, @JsonProperty("stddevSchedule") ISchedule stddevSchedule){
this.stddev = stddev;
this.stddevSchedule = stddevSchedule;
}
@Override
public INDArray applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr) {
double currS;
if(stddevSchedule != null){
currS = stddevSchedule.valueAt(iteration, epoch);
} else {
currS = stddev;
}
INDArray noise = Nd4j.createUninitialized(output.dataType(), inputActivations.shape(), inputActivations.ordering());
Nd4j.getExecutioner().exec(new GaussianDistribution(noise, 0, currS));
Nd4j.getExecutioner().exec(new AddOp(inputActivations, noise, output));
return output;
}
@Override
public INDArray backprop(INDArray gradAtOutput, INDArray gradAtInput, int iteration, int epoch) {
//dL/dIn = dL/dOut * dOut/dIn, with dOut/dIn = 1
if(gradAtInput == gradAtOutput){
//Same array (in-place result)
return gradAtInput;
} else {
return gradAtInput.assign(gradAtOutput);
}
}
@Override
public void clear() {
//No op
}
@Override
public IDropout clone() {
return new GaussianNoise(stddev, stddevSchedule);
}
}