Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.dropout;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.val;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.random.impl.DropOutInverted;
import org.nd4j.linalg.factory.Broadcast;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.schedule.ISchedule;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Data
@JsonIgnoreProperties({"mask"})
@EqualsAndHashCode(exclude = {"mask"})
public class SpatialDropout implements IDropout {
private double p;
private ISchedule pSchedule;
private transient INDArray mask;
/**
* @param activationRetainProbability Probability of retaining an activation - see {@link Dropout} javadoc
*/
public SpatialDropout(double activationRetainProbability) {
this(activationRetainProbability, null);
if (activationRetainProbability < 0.0) {
throw new IllegalArgumentException("Activation retain probability must be > 0. Got: " + activationRetainProbability);
}
if (activationRetainProbability == 0.0) {
throw new IllegalArgumentException("Invalid probability value: Dropout with 0.0 probability of retaining "
+ "activations is not supported");
}
}
/**
* @param activationRetainProbabilitySchedule Schedule for probability of retaining an activation - see {@link Dropout} javadoc
*/
public SpatialDropout(ISchedule activationRetainProbabilitySchedule) {
this(Double.NaN, activationRetainProbabilitySchedule);
}
protected SpatialDropout(@JsonProperty("p") double activationRetainProbability,
@JsonProperty("pSchedule") ISchedule activationRetainProbabilitySchedule) {
this.p = activationRetainProbability;
this.pSchedule = activationRetainProbabilitySchedule;
}
@Override
public INDArray applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr) {
Preconditions.checkArgument(inputActivations.rank() == 5 || inputActivations.rank() == 4
|| inputActivations.rank() == 3, "Cannot apply spatial dropout to activations of rank %s: " +
"spatial dropout can only be used for rank 3, 4 or 5 activations (input activations shape: %s)"
, inputActivations.rank(), inputActivations.shape());
double currP;
if (pSchedule != null) {
currP = pSchedule.valueAt(iteration, epoch);
} else {
currP = p;
}
val minibatch = inputActivations.size(0);
val dim1 = inputActivations.size(1);
mask = workspaceMgr.createUninitialized(ArrayType.INPUT, output.dataType(), minibatch, dim1).assign(1.0);
Nd4j.getExecutioner().exec(new DropOutInverted(mask, currP));
Broadcast.mul(inputActivations, mask, output, 0, 1);
return output;
}
@Override
public INDArray backprop(INDArray gradAtOutput, INDArray gradAtInput, int iteration, int epoch) {
Preconditions.checkState(mask != null, "Cannot perform backprop: Dropout mask array is absent (already cleared?)");
//Mask has values 0 or 1/p
//dL/dIn = dL/dOut * dOut/dIn = dL/dOut * (0 if dropped, or 1/p otherwise)
Broadcast.mul(gradAtOutput, mask, gradAtInput, 0, 1);
mask = null;
return gradAtInput;
}
@Override
public void clear() {
mask = null;
}
@Override
public IDropout clone() {
return new SpatialDropout(p, pSchedule);
}
}