org.deeplearning4j.nn.conf.graph.L2NormalizeVertex Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.val;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Data
@EqualsAndHashCode(callSuper = false)
public class L2NormalizeVertex extends GraphVertex {
public static final double DEFAULT_EPS = 1e-8;
protected int[] dimension;
protected double eps;
public L2NormalizeVertex() {
this(null, DEFAULT_EPS);
}
public L2NormalizeVertex(@JsonProperty("dimension") int[] dimension, @JsonProperty("eps") double eps) {
this.dimension = dimension;
this.eps = eps;
}
@Override
public L2NormalizeVertex clone() {
return new L2NormalizeVertex(dimension, eps);
}
@Override
public long numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams, DataType networkDatatype) {
return new org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex(graph, name, idx, dimension, eps, networkDatatype);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length == 1)
return vertexInputs[0];
InputType first = vertexInputs[0];
return first; //Same output shape/size as
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
InputType outputType = getOutputType(-1, inputTypes);
//norm2 value (inference working mem): 1 per example during forward pass
//Training working mem: 2 per example + 2x input size + 1 per example (in addition to epsilons)
val trainModePerEx = 3 + 2 * inputTypes[0].arrayElementsPerExample();
return new LayerMemoryReport.Builder(null, L2NormalizeVertex.class, inputTypes[0], outputType)
.standardMemory(0, 0) //No params
.workingMemory(0, 1, 0, trainModePerEx).cacheMemory(0, 0) //No caching
.build();
}
}