All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.graph.LayerVertex Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.graph;

import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.util.Arrays;

@NoArgsConstructor
@Data
@EqualsAndHashCode(callSuper = false)
public class LayerVertex extends GraphVertex {

    private NeuralNetConfiguration layerConf;
    private InputPreProcessor preProcessor;
    //Set outputVertex to true when Layer is an OutputLayer, OR For use in specialized situations like reinforcement learning
    // For RL situations, this Layer insn't an OutputLayer, but is the last layer in a graph, that gets its error/epsilon
    // passed in externally
    private boolean outputVertex;


    public LayerVertex(NeuralNetConfiguration layerConf, InputPreProcessor preProcessor) {
        this.layerConf = layerConf;
        this.preProcessor = preProcessor;
    }

    public InputPreProcessor getPreProcessor() {
        return this.preProcessor;
    }

    @Override
    public GraphVertex clone() {
        return new LayerVertex(layerConf.clone(), (preProcessor != null ? preProcessor.clone() : null));
    }

    @Override
    public boolean equals(Object o) {
        if (!(o instanceof LayerVertex))
            return false;
        LayerVertex lv = (LayerVertex) o;
        if ((layerConf == null && lv.layerConf != null) || (layerConf != null && lv.layerConf == null)) {
            return false;
        }
        if (layerConf != null && !layerConf.equals(lv.layerConf))
            return false;
        if (preProcessor == null && lv.preProcessor != null || preProcessor != null && lv.preProcessor == null)
            return false;
        return preProcessor == null || preProcessor.equals(lv.preProcessor);
    }

    @Override
    public int hashCode() {
        return layerConf.hashCode() ^ (preProcessor != null ? preProcessor.hashCode() : 0);
    }

    @Override
    public long numParams(boolean backprop) {
        return layerConf.getLayer().initializer().numParams(layerConf);
    }

    @Override
    public int minVertexInputs() {
        return 1;
    }

    @Override
    public int maxVertexInputs() {
        return 1;
    }

    @Override
    public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
                                                                      INDArray paramsView, boolean initializeParams, DataType networkDatatype) {
        //Now, we need to work out if this vertex is an output vertex or not...
        boolean isOutput = graph.getConfiguration().getNetworkOutputs().contains(name);

        org.deeplearning4j.nn.api.Layer layer =
                        layerConf.getLayer().instantiate(layerConf, null, idx, paramsView, initializeParams, networkDatatype);

        if(layer == null) {
            throw new IllegalStateException("Encountered null layer during initialization for layer:" +
                     layerConf.getLayer().getClass().getSimpleName() + " initialization returned null layer?");
        }

        return new org.deeplearning4j.nn.graph.vertex.impl.LayerVertex(graph, name, idx, layer, preProcessor, isOutput, networkDatatype);
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
        if (vertexInputs.length != 1) {
            throw new InvalidInputTypeException(
                            "LayerVertex expects exactly one input. Got: " + Arrays.toString(vertexInputs));
        }

        //Assume any necessary preprocessors have already been added
        InputType afterPreprocessor;
        if (preProcessor == null)
            afterPreprocessor = vertexInputs[0];
        else
            afterPreprocessor = preProcessor.getOutputType(vertexInputs[0]);

        InputType ret =  layerConf.getLayer().getOutputType(layerIndex, afterPreprocessor);
        return ret;
    }

    @Override
    public MemoryReport getMemoryReport(InputType... inputTypes) {
        if(inputTypes.length != 1){
            throw new IllegalArgumentException("Only one input supported for layer vertices: got "
                    + Arrays.toString(inputTypes));
        }
        InputType it;
        if(preProcessor != null){
            it = preProcessor.getOutputType(inputTypes[0]);
        } else {
            it = inputTypes[0];
        }
        //TODO preprocessor memory
        return layerConf.getLayer().getMemoryReport(it);
    }

    @Override
    public void setDataType(DataType dataType){
        layerConf.getLayer().setDataType(dataType);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy