org.deeplearning4j.nn.conf.graph.LayerVertex Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
@NoArgsConstructor
@Data
@EqualsAndHashCode(callSuper = false)
public class LayerVertex extends GraphVertex {
private NeuralNetConfiguration layerConf;
private InputPreProcessor preProcessor;
//Set outputVertex to true when Layer is an OutputLayer, OR For use in specialized situations like reinforcement learning
// For RL situations, this Layer insn't an OutputLayer, but is the last layer in a graph, that gets its error/epsilon
// passed in externally
private boolean outputVertex;
public LayerVertex(NeuralNetConfiguration layerConf, InputPreProcessor preProcessor) {
this.layerConf = layerConf;
this.preProcessor = preProcessor;
}
public InputPreProcessor getPreProcessor() {
return this.preProcessor;
}
@Override
public GraphVertex clone() {
return new LayerVertex(layerConf.clone(), (preProcessor != null ? preProcessor.clone() : null));
}
@Override
public boolean equals(Object o) {
if (!(o instanceof LayerVertex))
return false;
LayerVertex lv = (LayerVertex) o;
if ((layerConf == null && lv.layerConf != null) || (layerConf != null && lv.layerConf == null)) {
return false;
}
if (layerConf != null && !layerConf.equals(lv.layerConf))
return false;
if (preProcessor == null && lv.preProcessor != null || preProcessor != null && lv.preProcessor == null)
return false;
return preProcessor == null || preProcessor.equals(lv.preProcessor);
}
@Override
public int hashCode() {
return layerConf.hashCode() ^ (preProcessor != null ? preProcessor.hashCode() : 0);
}
@Override
public long numParams(boolean backprop) {
return layerConf.getLayer().initializer().numParams(layerConf);
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams, DataType networkDatatype) {
//Now, we need to work out if this vertex is an output vertex or not...
boolean isOutput = graph.getConfiguration().getNetworkOutputs().contains(name);
org.deeplearning4j.nn.api.Layer layer =
layerConf.getLayer().instantiate(layerConf, null, idx, paramsView, initializeParams, networkDatatype);
if(layer == null) {
throw new IllegalStateException("Encountered null layer during initialization for layer:" +
layerConf.getLayer().getClass().getSimpleName() + " initialization returned null layer?");
}
return new org.deeplearning4j.nn.graph.vertex.impl.LayerVertex(graph, name, idx, layer, preProcessor, isOutput, networkDatatype);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length != 1) {
throw new InvalidInputTypeException(
"LayerVertex expects exactly one input. Got: " + Arrays.toString(vertexInputs));
}
//Assume any necessary preprocessors have already been added
InputType afterPreprocessor;
if (preProcessor == null)
afterPreprocessor = vertexInputs[0];
else
afterPreprocessor = preProcessor.getOutputType(vertexInputs[0]);
InputType ret = layerConf.getLayer().getOutputType(layerIndex, afterPreprocessor);
return ret;
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
if(inputTypes.length != 1){
throw new IllegalArgumentException("Only one input supported for layer vertices: got "
+ Arrays.toString(inputTypes));
}
InputType it;
if(preProcessor != null){
it = preProcessor.getOutputType(inputTypes[0]);
} else {
it = inputTypes[0];
}
//TODO preprocessor memory
return layerConf.getLayer().getMemoryReport(it);
}
@Override
public void setDataType(DataType dataType){
layerConf.getLayer().setDataType(dataType);
}
}