org.deeplearning4j.nn.conf.graph.PreprocessorVertex Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.graph;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
@NoArgsConstructor
@Data
public class PreprocessorVertex extends GraphVertex {
private InputPreProcessor preProcessor;
/**
* @param preProcessor The input preprocessor
*/
public PreprocessorVertex(InputPreProcessor preProcessor) {
this.preProcessor = preProcessor;
}
@Override
public GraphVertex clone() {
return new PreprocessorVertex(preProcessor.clone());
}
@Override
public boolean equals(Object o) {
if (!(o instanceof PreprocessorVertex))
return false;
return ((PreprocessorVertex) o).preProcessor.equals(preProcessor);
}
@Override
public int hashCode() {
return preProcessor.hashCode();
}
@Override
public long numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams, DataType networkDatatype) {
return new org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex(graph, name, idx, preProcessor, networkDatatype);
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
//TODO: eventually account for preprocessor memory use
InputType outputType = getOutputType(-1, inputTypes);
return new LayerMemoryReport.Builder(null, PreprocessorVertex.class, inputTypes[0], outputType)
.standardMemory(0, 0) //No params
.workingMemory(0, 0, 0, 0).cacheMemory(0, 0) //No caching
.build();
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length != 1)
throw new InvalidInputTypeException("Invalid input: Preprocessor vertex expects " + "exactly one input");
return preProcessor.getOutputType(vertexInputs[0]);
}
}