org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.graph.rnn;
import lombok.Data;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.nn.conf.graph.GraphVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Data
@EqualsAndHashCode(callSuper = false)
public class DuplicateToTimeSeriesVertex extends GraphVertex {
private String inputName;
/**
* @param inputName Name of the input in the ComputationGraph network to use, to determine how long the output time
* series should be. This input should (a) exist, and (b) be a time series input
*/
public DuplicateToTimeSeriesVertex(@JsonProperty("inputName") String inputName) {
this.inputName = inputName;
}
@Override
public GraphVertex clone() {
return new DuplicateToTimeSeriesVertex(inputName);
}
@Override
public boolean equals(Object o) {
if (!(o instanceof DuplicateToTimeSeriesVertex))
return false;
DuplicateToTimeSeriesVertex d = (DuplicateToTimeSeriesVertex) o;
if (inputName == null && d.inputName != null || inputName != null && d.inputName == null)
return false;
return inputName == null || inputName.equals(d.inputName);
}
@Override
public int hashCode() {
return 534806565 ^ (inputName != null ? inputName.hashCode() : 0);
}
@Override
public long numParams(boolean backprop) {
return 0;
}
@Override
public int minVertexInputs() {
return 1;
}
@Override
public int maxVertexInputs() {
return 1;
}
@Override
public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx,
INDArray paramsView, boolean initializeParams, DataType networkDatatype) {
return new org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex(graph, name, idx, inputName, networkDatatype);
}
@Override
public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
if (vertexInputs.length != 1)
throw new InvalidInputTypeException("Invalid input type: cannot duplicate more than 1 input");
int tsLength = 1; //TODO work this out properly
if (vertexInputs[0].getType() == InputType.Type.FF) {
return InputType.recurrent(((InputType.InputTypeFeedForward) vertexInputs[0]).getSize(), tsLength);
} else if (vertexInputs[0].getType() == InputType.Type.CNNFlat) {
return InputType.recurrent(((InputType.InputTypeConvolutionalFlat) vertexInputs[0]).getFlattenedSize(),
tsLength);
} else {
throw new InvalidInputTypeException(
"Invalid input type: cannot duplicate to time series non feed forward (or CNN flat) input (got: "
+ vertexInputs[0] + ")");
}
}
@Override
public MemoryReport getMemoryReport(InputType... inputTypes) {
//No working memory in addition to output activations
return new LayerMemoryReport.Builder(null, DuplicateToTimeSeriesVertex.class, inputTypes[0],
getOutputType(-1, inputTypes)).standardMemory(0, 0).workingMemory(0, 0, 0, 0).cacheMemory(0, 0)
.build();
}
}