org.deeplearning4j.nn.conf.layers.BaseOutputLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import org.nd4j.linalg.lossfunctions.impl.LossBinaryXENT;
import org.nd4j.linalg.lossfunctions.impl.LossMCXENT;
import org.nd4j.linalg.lossfunctions.impl.LossMSE;
import org.nd4j.linalg.lossfunctions.impl.LossNegativeLogLikelihood;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public abstract class BaseOutputLayer extends FeedForwardLayer {
protected ILossFunction lossFn;
protected boolean hasBias = true;
protected BaseOutputLayer(Builder builder) {
super(builder);
this.lossFn = builder.lossFn;
this.hasBias = builder.hasBias;
}
public boolean hasBias() {
return hasBias;
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
//Basically a dense layer...
InputType outputType = getOutputType(-1, inputType);
val numParams = initializer().numParams(this);
val updaterStateSize = (int) getIUpdater().stateSize(numParams);
int trainSizeFixed = 0;
int trainSizeVariable = 0;
if (getIDropout() != null) {
if (false) {
//TODO drop connect
//Dup the weights... note that this does NOT depend on the minibatch size...
trainSizeVariable += 0; //TODO
} else {
//Assume we dup the input
trainSizeVariable += inputType.arrayElementsPerExample();
}
}
//Also, during backprop: we do a preOut call -> gives us activations size equal to the output size
// which is modified in-place by activation function backprop
// then we have 'epsilonNext' which is equivalent to input size
trainSizeVariable += outputType.arrayElementsPerExample();
return new LayerMemoryReport.Builder(layerName, OutputLayer.class, inputType, outputType)
.standardMemory(numParams, updaterStateSize)
.workingMemory(0, 0, trainSizeFixed, trainSizeVariable) //No additional memory (beyond activations) for inference
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
@Getter
@Setter
public static abstract class Builder> extends FeedForwardLayer.Builder {
/**
* Loss function for the output layer
*/
protected ILossFunction lossFn = new LossMCXENT();
/**
* If true (default): include bias parameters in the model. False: no bias.
*
*/
private boolean hasBias = true;
public Builder() {}
/**
* @param lossFunction Loss function for the output layer
*/
public Builder(LossFunction lossFunction) {
lossFunction(lossFunction);
}
/**
* @param lossFunction Loss function for the output layer
*/
public Builder(ILossFunction lossFunction) {
this.setLossFn(lossFunction);
}
/**
* @param lossFunction Loss function for the output layer
*/
public T lossFunction(LossFunction lossFunction) {
return lossFunction(lossFunction.getILossFunction());
}
/**
* If true (default): include bias parameters in the model. False: no bias.
*
* @param hasBias If true: include bias parameters in this model
*/
public T hasBias(boolean hasBias) {
this.setHasBias(hasBias);
return (T) this;
}
/**
* @param lossFunction Loss function for the output layer
*/
public T lossFunction(ILossFunction lossFunction) {
this.setLossFn(lossFunction);
return (T) this;
}
}
}