org.deeplearning4j.nn.conf.layers.BasePretrainNetwork Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.params.PretrainParamInitializer;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
@Data
@NoArgsConstructor
@ToString(callSuper = true, exclude = {"pretrain"})
@EqualsAndHashCode(callSuper = true, exclude = {"pretrain"})
@JsonIgnoreProperties("pretrain")
public abstract class BasePretrainNetwork extends FeedForwardLayer {
protected LossFunctions.LossFunction lossFunction;
protected double visibleBiasInit;
public BasePretrainNetwork(Builder builder) {
super(builder);
this.lossFunction = builder.lossFunction;
this.visibleBiasInit = builder.visibleBiasInit;
}
@Override
public boolean isPretrainParam(String paramName) {
return PretrainParamInitializer.VISIBLE_BIAS_KEY.equals(paramName);
}
@Getter
@Setter
public static abstract class Builder> extends FeedForwardLayer.Builder {
protected LossFunctions.LossFunction lossFunction = LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY;
protected double visibleBiasInit = 0.0;
public Builder() {}
public T lossFunction(LossFunctions.LossFunction lossFunction) {
this.setLossFunction(lossFunction);
return (T) this;
}
public T visibleBiasInit(double visibleBiasInit) {
this.setVisibleBiasInit(visibleBiasInit);
return (T) this;
}
}
}