Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.layers.LayerConstraint;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.distribution.Distribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.nn.weights.WeightInitDistribution;
import java.util.Arrays;
import java.util.List;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public abstract class BaseRecurrentLayer extends FeedForwardLayer {
protected IWeightInit weightInitFnRecurrent;
protected RNNFormat rnnDataFormat;
protected BaseRecurrentLayer(Builder builder) {
super(builder);
this.weightInitFnRecurrent = builder.weightInitFnRecurrent;
this.rnnDataFormat = builder.rnnDataFormat;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for RNN layer (layer index = " + layerIndex
+ ", layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: "
+ inputType);
}
InputType.InputTypeRecurrent itr = (InputType.InputTypeRecurrent) inputType;
return InputType.recurrent(nOut, itr.getTimeSeriesLength(), itr.getFormat());
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for RNN layer (layer name = \"" + getLayerName()
+ "\"): expect RNN input type with size > 0. Got: " + inputType);
}
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
if (nIn <= 0 || override) {
this.nIn = r.getSize();
}
if(rnnDataFormat == null || override)
this.rnnDataFormat = r.getFormat();
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, rnnDataFormat,getLayerName());
}
@NoArgsConstructor
@Getter
@Setter
public static abstract class Builder> extends FeedForwardLayer.Builder {
/**
* Set the format of data expected by the RNN. NCW = [miniBatchSize, size, timeSeriesLength],
* NWC = [miniBatchSize, timeSeriesLength, size]. Defaults to NCW.
*/
protected RNNFormat rnnDataFormat = RNNFormat.NCW;
/**
* Set constraints to be applied to the RNN recurrent weight parameters of this layer. Default: no
* constraints. Constraints can be used to enforce certain conditions (non-negativity of parameters,
* max-norm regularization, etc). These constraints are applied at each iteration, after the parameters have
* been updated.
*/
protected List recurrentConstraints;
/**
* Set constraints to be applied to the RNN input weight parameters of this layer. Default: no constraints.
* Constraints can be used to enforce certain conditions (non-negativity of parameters, max-norm regularization,
* etc). These constraints are applied at each iteration, after the parameters have been updated.
*
*/
protected List inputWeightConstraints;
/**
* Set the weight initialization for the recurrent weights. Not that if this is not set explicitly, the same
* weight initialization as the layer input weights is also used for the recurrent weights.
*
*/
protected IWeightInit weightInitFnRecurrent;
/**
* Set constraints to be applied to the RNN recurrent weight parameters of this layer. Default: no
* constraints. Constraints can be used to enforce certain conditions (non-negativity of parameters,
* max-norm regularization, etc). These constraints are applied at each iteration, after the parameters have
* been updated.
*
* @param constraints Constraints to apply to the recurrent weight parameters of this layer
*/
public T constrainRecurrent(LayerConstraint... constraints) {
this.setRecurrentConstraints(Arrays.asList(constraints));
return (T) this;
}
/**
* Set constraints to be applied to the RNN input weight parameters of this layer. Default: no constraints.
* Constraints can be used to enforce certain conditions (non-negativity of parameters, max-norm regularization,
* etc). These constraints are applied at each iteration, after the parameters have been updated.
*
* @param constraints Constraints to apply to the input weight parameters of this layer
*/
public T constrainInputWeights(LayerConstraint... constraints) {
this.setInputWeightConstraints(Arrays.asList(constraints));
return (T) this;
}
/**
* Set the weight initialization for the recurrent weights. Not that if this is not set explicitly, the same
* weight initialization as the layer input weights is also used for the recurrent weights.
*
* @param weightInit Weight initialization for the recurrent weights only.
*/
public T weightInitRecurrent(IWeightInit weightInit) {
this.setWeightInitFnRecurrent(weightInit);
return (T) this;
}
/**
* Set the weight initialization for the recurrent weights. Not that if this is not set explicitly, the same
* weight initialization as the layer input weights is also used for the recurrent weights.
*
* @param weightInit Weight initialization for the recurrent weights only.
*/
public T weightInitRecurrent(WeightInit weightInit) {
if (weightInit == WeightInit.DISTRIBUTION) {
throw new UnsupportedOperationException(
"Not supported!, Use weightInit(Distribution distribution) instead!");
}
this.setWeightInitFnRecurrent(weightInit.getWeightInitFunction());
return (T) this;
}
/**
* Set the weight initialization for the recurrent weights, based on the specified distribution. Not that if
* this is not set explicitly, the same weight initialization as the layer input weights is also used for the
* recurrent weights.
*
* @param dist Distribution to use for initializing the recurrent weights
*/
public T weightInitRecurrent(Distribution dist) {
this.setWeightInitFnRecurrent(new WeightInitDistribution(dist));
return (T) this;
}
public T dataFormat(RNNFormat rnnDataFormat){
this.rnnDataFormat = rnnDataFormat;
return (T)this;
}
}
}