All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer;
import org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.*;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class DepthwiseConvolution2D extends ConvolutionLayer {
protected int depthMultiplier;
protected DepthwiseConvolution2D(Builder builder) {
super(builder);
Preconditions.checkState(builder.depthMultiplier > 0, "Depth multiplier must be > 0, got %s", builder.depthMultiplier);
this.depthMultiplier = builder.depthMultiplier;
this.nOut = this.nIn * this.depthMultiplier;
this.cnn2dDataFormat = builder.cnn2DFormat;
initializeConstraints(builder);
}
@Override
public DepthwiseConvolution2D clone() {
DepthwiseConvolution2D clone = (DepthwiseConvolution2D) super.clone();
clone.depthMultiplier = depthMultiplier;
return clone;
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
LayerValidation.assertNInNOutSet("DepthwiseConvolution2D", getLayerName(), layerIndex, getNIn(), getNOut());
DepthwiseConvolution2DLayer ret = new DepthwiseConvolution2DLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return DepthwiseConvolutionParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.CNN) {
throw new IllegalStateException("Invalid input for depth-wise convolution layer (layer name=\""
+ getLayerName() + "\"): Expected CNN input, got " + inputType);
}
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
nOut, layerIndex, getLayerName(), cnn2dDataFormat, DepthwiseConvolution2DLayer.class);
}
@Override
public void setNIn(InputType inputType, boolean override) {
super.setNIn(inputType, override);
if(nOut == 0 || override){
nOut = this.nIn * this.depthMultiplier;
}
this.cnn2dDataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
}
@Getter
@Setter
public static class Builder extends BaseConvBuilder {
/**
* Set channels multiplier for depth-wise convolution
*
*/
protected int depthMultiplier = 1;
protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;
public Builder(int[] kernelSize, int[] stride, int[] padding) {
super(kernelSize, stride, padding);
}
public Builder(int[] kernelSize, int[] stride) {
super(kernelSize, stride);
}
public Builder(int... kernelSize) {
super(kernelSize);
}
public Builder() {
super();
}
@Override
protected boolean allowCausal() {
//Causal convolution - allowed for 1D only
return false;
}
/**
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
* See {@link CNN2DFormat} for more details.
* Default: NCHW
* @param format Format for activations (in and out)
*/
public Builder dataFormat(CNN2DFormat format){
this.cnn2DFormat = format;
return this;
}
/**
* Set channels multiplier for depth-wise convolution
*
* @param depthMultiplier integer value, for each input map we get depthMultiplier outputs in channels-wise
* step.
* @return Builder
*/
public Builder depthMultiplier(int depthMultiplier) {
this.setDepthMultiplier(depthMultiplier);
return this;
}
/**
* Size of the convolution rows/columns
*
* @param kernelSize the height and width of the kernel
*/
public Builder kernelSize(int... kernelSize) {
this.setKernelSize(kernelSize);
return this;
}
/**
* Stride of the convolution in rows/columns (height/width) dimensions
*
* @param stride Stride of the layer
*/
public Builder stride(int... stride) {
this.setStride(stride);
return this;
}
/**
* Padding of the convolution in rows/columns (height/width) dimensions
*
* @param padding Padding of the layer
*/
public Builder padding(int... padding) {
this.setPadding(padding);
return this;
}
@Override
public void setKernelSize(int... kernelSize) {
this.kernelSize = ValidationUtils.validate2NonNegative(kernelSize, false, "kernelSize");
}
@Override
public void setStride(int... stride) {
this.stride = ValidationUtils.validate2NonNegative(stride, false, "stride");
}
@Override
public void setPadding(int... padding) {
this.padding = ValidationUtils.validate2NonNegative(padding, false, "padding");
}
@Override
public void setDilation(int... dilation) {
this.dilation = ValidationUtils.validate2NonNegative(dilation, false, "dilation");
}
@Override
@SuppressWarnings("unchecked")
public DepthwiseConvolution2D build() {
ConvolutionUtils.validateConvolutionModePadding(convolutionMode, padding);
ConvolutionUtils.validateCnnKernelStridePadding(kernelSize, stride, padding);
return new DepthwiseConvolution2D(this);
}
}
}