All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.layers;

import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer;
import org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.util.*;

@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class DepthwiseConvolution2D extends ConvolutionLayer {

    protected int depthMultiplier;

    protected DepthwiseConvolution2D(Builder builder) {
        super(builder);
        Preconditions.checkState(builder.depthMultiplier > 0, "Depth multiplier must be > 0,  got %s", builder.depthMultiplier);
        this.depthMultiplier = builder.depthMultiplier;
        this.nOut = this.nIn * this.depthMultiplier;
        this.cnn2dDataFormat = builder.cnn2DFormat;

        initializeConstraints(builder);
    }

    @Override
    public DepthwiseConvolution2D clone() {
        DepthwiseConvolution2D clone = (DepthwiseConvolution2D) super.clone();
        clone.depthMultiplier = depthMultiplier;
        return clone;
    }


    @Override
    public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
                             int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
        LayerValidation.assertNInNOutSet("DepthwiseConvolution2D", getLayerName(), layerIndex, getNIn(), getNOut());

        DepthwiseConvolution2DLayer ret = new DepthwiseConvolution2DLayer(conf, networkDataType);
        ret.setListeners(trainingListeners);
        ret.setIndex(layerIndex);
        ret.setParamsViewArray(layerParamsView);
        Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
        ret.setParamTable(paramTable);
        ret.setConf(conf);

        return ret;
    }

    @Override
    public ParamInitializer initializer() {
        return DepthwiseConvolutionParamInitializer.getInstance();
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType inputType) {
        if (inputType == null || inputType.getType() != InputType.Type.CNN) {
            throw new IllegalStateException("Invalid input for  depth-wise convolution layer (layer name=\""
                            + getLayerName() + "\"): Expected CNN input, got " + inputType);
        }

        return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
                        nOut, layerIndex, getLayerName(), cnn2dDataFormat, DepthwiseConvolution2DLayer.class);
    }

    @Override
    public void setNIn(InputType inputType, boolean override) {
        super.setNIn(inputType, override);

        if(nOut == 0 || override){
            nOut = this.nIn * this.depthMultiplier;
        }
        this.cnn2dDataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
    }

    @Getter
    @Setter
    public static class Builder extends BaseConvBuilder {

        /**
         * Set channels multiplier for depth-wise convolution
         *
         */
        protected int depthMultiplier = 1;
        protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;


        public Builder(int[] kernelSize, int[] stride, int[] padding) {
            super(kernelSize, stride, padding);
        }

        public Builder(int[] kernelSize, int[] stride) {
            super(kernelSize, stride);
        }

        public Builder(int... kernelSize) {
            super(kernelSize);
        }

        public Builder() {
            super();
        }

        @Override
        protected boolean allowCausal() {
            //Causal convolution - allowed for 1D only
            return false;
        }

        /**
         * Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
         * See {@link CNN2DFormat} for more details.
* Default: NCHW * @param format Format for activations (in and out) */ public Builder dataFormat(CNN2DFormat format){ this.cnn2DFormat = format; return this; } /** * Set channels multiplier for depth-wise convolution * * @param depthMultiplier integer value, for each input map we get depthMultiplier outputs in channels-wise * step. * @return Builder */ public Builder depthMultiplier(int depthMultiplier) { this.setDepthMultiplier(depthMultiplier); return this; } /** * Size of the convolution rows/columns * * @param kernelSize the height and width of the kernel */ public Builder kernelSize(int... kernelSize) { this.setKernelSize(kernelSize); return this; } /** * Stride of the convolution in rows/columns (height/width) dimensions * * @param stride Stride of the layer */ public Builder stride(int... stride) { this.setStride(stride); return this; } /** * Padding of the convolution in rows/columns (height/width) dimensions * * @param padding Padding of the layer */ public Builder padding(int... padding) { this.setPadding(padding); return this; } @Override public void setKernelSize(int... kernelSize) { this.kernelSize = ValidationUtils.validate2NonNegative(kernelSize, false, "kernelSize"); } @Override public void setStride(int... stride) { this.stride = ValidationUtils.validate2NonNegative(stride, false, "stride"); } @Override public void setPadding(int... padding) { this.padding = ValidationUtils.validate2NonNegative(padding, false, "padding"); } @Override public void setDilation(int... dilation) { this.dilation = ValidationUtils.validate2NonNegative(dilation, false, "dilation"); } @Override @SuppressWarnings("unchecked") public DepthwiseConvolution2D build() { ConvolutionUtils.validateConvolutionModePadding(convolutionMode, padding); ConvolutionUtils.validateCnnKernelStridePadding(kernelSize, stride, padding); return new DepthwiseConvolution2D(this); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy