org.deeplearning4j.nn.conf.layers.DropoutLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.dropout.Dropout;
import org.deeplearning4j.nn.conf.dropout.IDropout;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.learning.regularization.Regularization;
import java.util.Collection;
import java.util.List;
import java.util.Map;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class DropoutLayer extends FeedForwardLayer {
private DropoutLayer(Builder builder) {
super(builder);
}
public DropoutLayer(double activationRetainProb){
this(new Builder().dropOut(activationRetainProb));
}
public DropoutLayer(IDropout dropout){
this(new Builder().dropOut(dropout));
}
@Override
public DropoutLayer clone() {
return (DropoutLayer) super.clone();
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.DropoutLayer ret = new org.deeplearning4j.nn.layers.DropoutLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return EmptyParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null) {
throw new IllegalStateException("Invalid input type: null for layer name \"" + getLayerName() + "\"");
}
return inputType;
}
@Override
public void setNIn(InputType inputType, boolean override) {
//No op: dropout layer doesn't have a fixed nIn value
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
//No input preprocessor required; dropout applies to any input type
return null;
}
@Override
public List getRegularizationByParam(String paramName) {
//Not applicable
return null;
}
@Override
public boolean isPretrainParam(String paramName) {
throw new UnsupportedOperationException("Dropout layer does not contain parameters");
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
val actElementsPerEx = inputType.arrayElementsPerExample();
//During inference: not applied. During backprop: dup the input, in case it's used elsewhere
//But: this will be counted in the activations
//(technically inference memory is over-estimated as a result)
return new LayerMemoryReport.Builder(layerName, DropoutLayer.class, inputType, inputType).standardMemory(0, 0) //No params
.workingMemory(0, 0, 0, 0) //No working mem, other than activations etc
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
@NoArgsConstructor
public static class Builder extends FeedForwardLayer.Builder {
/**
* Create a dropout layer with standard {@link Dropout}, with the specified probability of retaining the input
* activation. See {@link Dropout} for the full details
*
* @param dropout Activation retain probability.
*/
public Builder(double dropout) {
this.dropOut(new Dropout(dropout));
}
/**
* @param dropout Specified {@link IDropout} instance for the dropout layer
*/
public Builder(IDropout dropout) {
this.dropOut(dropout);
}
@Override
@SuppressWarnings("unchecked")
public DropoutLayer build() {
return new DropoutLayer(this);
}
}
}